[1]陈建平,王建彬,杨宜民.基于大脑情感学习的四轮驱动机器人速度补偿控制[J].智能系统学报,2013,8(04):361-366.[doi:10.3969/j.issn.1673-4785.201303030]
 CHEN Jianping,WANG Jianbin,YANG Yimin.Velocity compensation control for a four-wheel drive robot based on brain emotional learning[J].CAAI Transactions on Intelligent Systems,2013,8(04):361-366.[doi:10.3969/j.issn.1673-4785.201303030]
点击复制

基于大脑情感学习的四轮驱动机器人速度补偿控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第8卷
期数:
2013年04期
页码:
361-366
栏目:
出版日期:
2013-08-25

文章信息/Info

Title:
Velocity compensation control for a four-wheel drive robot based on brain emotional learning
文章编号:
1673-4785(2013)04-0361-06
作者:
陈建平1王建彬2杨宜民2
1. 肇庆学院 计算机学院,广东 肇庆 526061; 2. 广东工业大学 自动化学院,广东 广州 510090
Author(s):
CHEN Jianping1 WANG Jianbin2 YANG Yimin2
1. School of Computer Science, Zhaoqing University, Zhaoqing 526061, China; 2. School of Automation, Guangdong University of Technology, Guangzhou 510090, China
关键词:
全向移动机器人大脑情感学习速度补偿轨迹跟踪运动控制
Keywords:
omni-directional mobile robots brain emotional learning velocity compensation trajectory tracking motion control
分类号:
TP242.6
DOI:
10.3969/j.issn.1673-4785.201303030
文献标志码:
A
摘要:
由于4轮驱动机器人的轮间耦合特性及系统非线性的存在,即使单个驱动电机的控制精度达到最优,机器人整体的运动控制效果也未必理想.针对这一问题,提出一种基于大脑情感学习的机器人速度补偿控制方法.基于大脑情感学习计算模型,设计了融合机器人整体速度跟踪误差及其积分、微分信息的补偿控制器,通过计算模型内部各节点权值的在线学习,及时地调整控制器的参数,实现对4个轮子速度的自适应补偿.仿真实验表明,该方法有效减小了非线性干扰对系统的影响,具有较高的稳态控制精度和较快的响应速度,大大提高了机器人整体的速度和轨迹跟踪精度.
Abstract:
Since there are system nonlinearity and couple relationships in four wheels, even each motor has the optimal parameters, and the whole robot may not be precisely controlled. A velocity compensation controller based on brain emotional learning was applied to the motion control of a four-wheel drive omni-directional mobile robot (FDOMR) in this paper, which contains differential and integral information of robot speed tracking errors. By means of the parameters adjusted through online learning of weight of every node inside the computing model, adaptive compensation of four wheels’ speed was achieved. The simulation results show that the influence produced by non-linear disturbance is effectively decreased; as a result, the system has higher steady-state control precision and faster response speed, greatly increasing the whole velocity and trajectory control precision of the robot.

参考文献/References:

[1]EFENDI M S, MOHAMED R, SAZALI Y. Designing omni-directional mobile robot with mecanum wheel[J]. American Journal of Applied Sciences, 2006, 3(5): 1831-1835.
[2]BAHAA I K, ALI H H, MUSTAFA M M. Modified vector field histogram with a neural network learning model for mobile robot path planning and obstacle avoidance[J]. International Jouranl of Advancements in Computing Technology, 2010, 2(5): 166-173.
[3]ALI H H, FATIMA B I. Path lanning of mobile robot based on modification of vector field histogram using neuro-fuzzy algorithm[J]. International Journal of Advancements in Computing Technology, 2010, 2(3): 129-138.
[4]MARYAM R, MOHAMMAD H K, MOHAMMAD A N, et al. Designing the fuzzy controller in mobile robot navigation with the presence of unknown obstacles[J]. International Journal of Intelligent Information Processing, 2012, 3(1): 45-62
[5]ALBERTO V, CARL T, BENGT L, et al. Modeling and optimization of energy consumption in cooperative multi-robot systems[J]. IEEE Transactions on Automation Science and Engineering, 2012, 9(2): 423-428.
[6]ELEFTHERIA S S, GEORGE S S, ANASTASIOS D P. Optimal robot speed trajectory by minimization of the actuator motor electromechanical losses[J]. Journal of Intelligent and Robotic Systems, 2002, 33: 187-207.
[7]熊蓉, 张翮, 褚健, 等. 四轮全方位移动机器人的建模和最优控制[J].控制理论与应用, 2006, 23(1): 96-98. 
        XIONG Rong, ZHANG He, CHU Jian, et al. Modeling and optimal control of omni-directional mobile robots[J]. Control Theory and Applications, 2006, 23(1): 96-98.
[8]曹洋, 徐心和. 一种基于交叉耦合的速度控制器[J].东北大学学报, 2003, 24(5): 420-423. 
        CAO Yang, XU Xinhe. Crosscoupling speed controller[J]. Journal of Northeastern University, 2003, 24(5): 420-423.
[9]兰天, 刘伊威, 陈养彬, 等. 机器人灵巧手基关节交叉耦合同步控制[J]. 机器人, 2010, 32(2): 150-156. 
        LAN Tian, LIU Yiwei, CHEN Yangbin, et al. Synchronized cross-coupled control for base joint of dexterous robot hand[J]. Robot, 2010, 32(2): 150-156.
[10]匡建辉, 杨宜民. 基于模糊PD控制的四轮驱动全向移动机器人速度补偿控制器研究[J]. 计算技术与自动化, 2011, 30(1): 21-25.
        KUANG Jianhui, YANG Yimin. Velocity compensate controller of four-wheel drive omni-directional mobile robots based on fuzzy-PD control method[J]. Computing Technology and Automation, 2011, 30(1): 21-25.
[11]LUCAS C, SHAHMIRZADI D, SHEIKHOLESLAMI N. Introducing BELBIC: brain emotional learning based intelligent controller[J]. International Journal of Intelligent Automation and Soft Computing, 2004, 10(1): 11-22.
[12]MEHRABIAN A R, LUCAS C. Emotional learning based intelligent robust adaptive controller for stable uncertain nonlinear systems[J]. International Journal of Computational Intelligence, 2005, 2(4): 1304-4508.
[13]CHEN J P, WANG J B, YANG Y M. A motion control method of four-wheel drive omni-directional mobile robots based on multi points preview control[J]. Journal of Theoretical and Applied Information Technology, 2012, 45(1): 278-284.

相似文献/References:

[1]王建彬,陈建平,杨宜民.动力学解析的四轮全向移动机器人电机解耦控制[J].智能系统学报,2014,9(05):569.[doi:10.3969/j.issn.1673-4785.201304003]
 WANG Jianbin,CHEN Jianping,YANG Yimin.Motor decoupling control for four-wheel omni-directional mobile robot based on dynamic analysis[J].CAAI Transactions on Intelligent Systems,2014,9(04):569.[doi:10.3969/j.issn.1673-4785.201304003]

备注/Memo

备注/Memo:
收稿日期:2013-03-18.     网络出版日期:2013-06-03. 
基金项目:广东省自然科学基金资助项目(S2011010004006);广东省教育部产学研结合资助项目(2012B091100423);肇庆市科技计划资助项目(2010F006);肇庆学院科研启动基金资助项目(2012KQ01).
通信作者:陈建平. E-mail: jpchen@zqu.edu.cn.
作者简介:
陈建平,男,1975年生,副教授,博士,主要研究方向为人工智能与智能机器人,获国家实用新型专利1项,发表学术论文20余篇,出版著作1部. 
王建彬,男,1982年生,博士研究生,主要研究方向为智能机器人与智能控制,发表学术论文8篇.
杨宜民,男,1945年生,教授,博士生导师,主要研究方向为智能机器人、自动控制、机器视觉等,发表学术论文100余篇,出版著作6部.
更新日期/Last Update: 2013-09-27