[1]吴君,张京娟.采用遗传算法的多机自由飞行冲突解脱策略[J].智能系统学报,2013,8(01):16-20.[doi:10.3969/j.issn.16730-4785.201210032]
 WU Jun,ZHANG Jingjuan.Conflict resolution of multiple airplanes in free flight based on the genetic algorithm[J].CAAI Transactions on Intelligent Systems,2013,8(01):16-20.[doi:10.3969/j.issn.16730-4785.201210032]
点击复制

采用遗传算法的多机自由飞行冲突解脱策略(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第8卷
期数:
2013年01期
页码:
16-20
栏目:
出版日期:
2013-03-25

文章信息/Info

Title:
Conflict resolution of multiple airplanes in free flight  based on the genetic algorithm
文章编号:
1673-4785(2013)01-0016-05
作者:
吴君张京娟
北京航空航天大学 仪器科学与光电工程学院,北京 100191
Author(s):
WU Jun ZHANG Jingjuan
School of Instrument Science and Opt electronic Engineering, Beihang University, Beijing 100191, China
关键词:
多机自由飞行遗传算法冲突解脱飞行机制
Keywords:
multiple airplanes free flight genetic algorithm conflict relief flight mechanism
分类号:
TP301.6
DOI:
10.3969/j.issn.16730-4785.201210032
文献标志码:
A
摘要:
为了解决自由飞行时飞机间的冲突解脱问题,提出了一种能够快速准确解算最优航路的算法.遗传算法具有简单通用、鲁棒性强等特点,应用遗传算法通过改变飞行航向和飞行速度2种方式解决了两机及多机间自由飞行冲突解脱问题,同时还探讨了多机相对飞行时冲突解脱的有效飞行机制.仿真结果表明,无论是改变飞行航向还是改变飞行速度,算法均能够较快地得出最优冲突解脱路线,同时当多机在一点处存在冲突时,采用改变航向的解脱方式具有更好的适用性.
Abstract:
In order to resolve the conflict among airplanes in free flight, the study proposed to examine a genetic algorithm to quickly solve the best route. The genetic algorithm was considered to be a simplification, generalization and strong robustness. By applying the genetic algorithm, the conflict relief among multiplanes can be resolved respectively by altering the heading, speed, and the effective flight mechanism when multiple airplanes are flying relatively at the same time. The simulation results show that the algorithm can achieve the optimal conflict relief route quickly by utilizing both methods, and if there is a conflict at a point among multiplanes, using the method of changing the heading is more applicable.

参考文献/References:

[1]张军.现代空中交通管理[M].北京:北京航空航天大学出版社, 2003: 17-33.
[2]程丽媛.自由飞行冲突探测与解脱技术的国内外发展和研究现状[J].中国民航飞行学院学报, 2007, 39(5): 21-23. 
CHENG Liyuan. The development and research of free flight conflict detection and resolution technology at home and abroad[J]. Journal of Civil Aviation Flight University of China, 2007, 39(5): 21-23.
[3]KUCHAR J K, YANG L C. A review of conflict detection and resolution modeling methods[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4): 179-189.
[4]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社, 1999:2 3.
[5]杨尚文,戴福青.基于一种免疫遗传算法的自由飞行冲突解脱[J].航空计算技术, 2007, 37(1): 41-43. 
YANG Shangwen, DAI Fuqing. Conflict resolution in free flight based on an immune genetic algorithm[J]. Aeronautical Computing Technique, 2007, 37(1): 41-43.
[6]〖JP3〗刘星,胡明华,董襄宁.遗传算法在飞行冲突探测解脱中的应用[J].南京航空航天大学学报, 2002, 34(1): 36-39. 
LIU Xing, HU Minghua, DONG Xiangning. Application of genetic algorithms for solving flight conflicts[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2002, 34(1): 36-39.
[7]赵荣,张京娟.改进的遗传算法在飞行冲突解脱中的应用[J].电子测量技术, 2009, 32(11): 37-39. 
ZHAO Rong, ZHANG Jingjuan. Conflict resolution based on an improved genetic algorithm[J]. Electronic Measurement Technology, 2009, 32(11): 37-39.
[8]王洁宁,袁志娟.基于粒子群算法的飞行冲突解脱问题[J].中国民航大学学报, 2010, 28(4): 1-4. 
WANG Jiening, YUAN Zhijuan. Study on resolution of flight conflicts based on particle swarm optimization[J]. Journal of Civil Aviation University of China, 2010, 28(4): 1-4.
[9]魏全新,刘贤锋,黄锵,等.遗传算法选择方法的比较分析[J].通讯和计算机, 2008, 5(8): 61-65. 
WEI Quanxin, LIU Xianfeng, HUANG Qiang, et al. The comparison of different selection methods in genetic algorithms[J]. Journal of Communication and Computer, 2008, 5(8): 61-65.

备注/Memo

备注/Memo:
收稿日期:2012.10.22.
网络出版日期:2013.01.25 .
基金项目:国家自然科学基金资助项目(61079017). 
通信作者:吴君.
E-mail: dugujian5@sina.com.
作者简介:
吴君,男,1987年生,硕士研究生,主要研究方向为高精度惯性导航技术和组合导航,发表学术论文3篇.
张京娟,女,1975年生,讲师,博士后,主要研究方向为高精度惯性导航技术、组合导航和空基体系感知技术等,发表学术论文10余篇.
更新日期/Last Update: 2013-04-12