[1]尹丹艳,吴一全.灰色预测和混沌PSO的红外小目标检测[J].智能系统学报,2011,6(02):126-131.
 YIN Danyan,WU Yiquan.The detection of a small infrared target based on gray prediction and chaotic PSO[J].CAAI Transactions on Intelligent Systems,2011,6(02):126-131.
点击复制

灰色预测和混沌PSO的红外小目标检测(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第6卷
期数:
2011年02期
页码:
126-131
栏目:
出版日期:
2011-04-25

文章信息/Info

Title:
The detection of a small infrared target based on gray prediction and chaotic PSO
文章编号:
1673-4785(2011)02-0126-06
作者:
尹丹艳1吴一全12
1 南京航空航天大学信息科学与技术学院,江苏 南京 210016;
 2 光电控制技术重点实验室,河南 洛阳 471000
Author(s):
YIN Danyan1 WU Yiquan12
1 School of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
2 Science and Technology on Electrooptic Control Laboratory, Luoyang 471009, China
关键词:
红外小目标检测背景抑制灰色预测模糊最大熵混沌粒子群
Keywords:
detection of infrared small target background suppression gray prediction fuzzy maximum entropy chaotic particle swarm optimization
分类号:
TP18;TN911.73
文献标志码:
A
摘要:
在分析红外图像弱小目标和背景特征的基础上,提出了一种基于灰色预测和混沌PSO的红外小目标检测方法.该方法首先采用灰色系统理论中的GM(1.1)模型对红外图像中的背景进行时域预测,并用实际图像减去预测图像得到残差图像,在抑制背景的同时增强了目标;然后提出了混沌粒子群优化(particle swarm optimization,PSO)的模糊最大熵二维直方图斜分方法,采用此方法对所得残差图像进行分割即可将小目标检测出来.实验结果表明:该方法可显著提高红外目标的检测概率,实现较远距离小目标的检测.
Abstract:
By analyzing the characteristics of a small target and the background of an infrared image, a detection method of an infrared small target based on gray prediction and chaotic particle swarm optimization (PSO) was proposed. First, the GM(1,1) model of gray system theory was adopted to predict the infrared image background in a time domain. The subtraction of the source image minus the predicted image gave the residual image. As a result, the background was suppressed and the target was enhanced. Then, a twodimensional histogram oblique segmentation method based on chaotic PSO and fuzzy maximum entropy was presented. The residual image was segmented by this method, leading to the detection of the small target. The experimental results show that the proposed method can significantly increase the detection probability of an infrared target to achieve longrange small target detection.

参考文献/References:

[1]秦翰林,刘上乾,周慧鑫,等.采用Gabor核非局部均值的弱小目标背景抑制[J].红外与激光工程, 2009, 38(4):737741.
QIN Hanlin, LIU Shangqian, ZHOU Huixin, et al. Background suppression for din small target with Gabor kernel nonlocal means[J]. Infrared and Laser Engineering, 2009, 38(4): 737741.
[2]WU Wei, PENG Jiaxiong. Algorithm of infrared background suppression and small target detection[J]. Infrared Laser Engineering (S10072276), 2003, 32(2): 148152.
[3]汪大宝,刘上乾,寇小明,等.基于MRF的自适应正则化红外背景杂波抑制算法[J].红外与毫米波学报, 2009, 28(6): 440444.
WANG Dabao, LIU Shangqian, KOU Xiaoming, et al. Infrared background clutter suppression algorithm of adaptive regularization based on MRF[J]. J Infrared and Millimeter Waves, 2009, 28(6): 440444.
[4]李凡,刘上乾,洪鸣,等.基于背景预测的红外弱小目标检测新算法[J].西安电子科技大学学报:自然科学版,2009, 36(6): 10751078.
LI Fan, LIU Shangqian, HONG Ming, et al. Dim infrared targets detection based on background prediction[J]. Journal of Xidian University:Natural science Edition, 2009, 36(6): 10751078.
[5]SONI T, ZEIDLER J R, KU W H. Performance evaluation of 2D adaptive prediction filters for detection of small objects in image data[J]. IEEE Transactions on Image Processing, 1993, 2(3): 327340.
 [6]MICHIELSEN K, De R H. Integralgeometry morphological image analysis[J]. Physics Reports, 2001, 347: 461538.
[7]吴一全,罗子娟.基于最小一乘背景预测的红外小目标检测算法[J].光电工程, 2008, 35(4): 1216.
WU Yiquan, LUO Zijuan. Method of target detection in infrared image sequences based on the least absolute deviation background prediction[J]. OptoElectronic Engineering, 2008, 35(4): 1216.
[8]彭罡,张启衡,刘泽金,等.一种强光背景下小目标图像的增强方法[J].光电工程, 2007, 34(12): 8792.
PENG Gang, ZHANG Qiheng, LIU Zejin, et al. Image enhancement method of small target in strong light level background[J]. OptoElectronic Engineering, 2007, 34(12): 8792.
[9]李天钢,王素品,秦辰.基于信息熵窗的小波低频子带弱目标图像的增强[J].西安交通大学学报,2006, 40(2):187190.
LI Tiangang, WANG Supin, QIN Chen. Enhancement of weak objective image with wavelet low frequency subband based on information entropy window[J]. Journal of Xi’an Jiaotong University, 2006, 40(2): 187190.
[10]闫敬文,朱明,王延杰.基于小波变换的低光照对比度或强噪声背景下图像增强与目标提取方法[J].厦门大学学报:自然科学版, 2004, 43(2): 195198.
YAN Jingwen, ZHU Ming, WANG Yanjie. An image enhancement and target recognition method of low illumination contrast based on wavelet transformation[J]. Journal of Xiamen University: Natural Science, 2004, 43(2): 195198.
[11]徐剑峰,吴一全,周建江.基于时域背景预测检测红外图像序列中的小目标[J].中国图象图形学报, 2007, 12(9): 15981603.
XU Jianfeng, WU Yiquan, ZHOU Jianjiang. Small target detection based on temporal predictions of background in infrared image sequences[J]. Journal of Image and Graphics, 2007, 12(9): 15981603.
[12]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社, 1990: 120.
[13]谢开贵,李春燕,周家启.基于遗传算法的GM(1,1,λ)模型[J].系统工程学报, 2000, 15(2): 168172.
 XIE Kaigui, LI Chunyan, ZHOU Jiaqi. Gray model (GM(1,1,λ)) based on genetic algorithm[J]. Journal of Systems Engineering, 2000, 15(2): 168172.
[14]张世强.基于信息再利用的灰色系统GM(1,1)模型建模方法及应用[J].数学的实践与认识, 2009, 39(13):97104.
ZHANG Shiqiang. Modeling method of grey system GM(1,1) model based information reused and it’s application[J].Mathematics in Practice and Theory, 2009, 39(13): 97104.
[15]陈杰,潘峰,王光辉.粒子群优化方法在动态优化中的研究现状[J]. 智能系统学报, 2009, 4(3): 189198.
 CHEN Jie, PAN Feng, WANG Guanghui. Review of the PSO research in dynamic environments[J]. CAAI Transactions on Intelligent Systems, 2009, 4(3): 189198.
[16]张浩,沈继红,张铁男,等. 一种基于混沌映射的粒子群优化算法及性能仿真[J]. 系统仿真学报, 2008, 20(20): 54625466.
ZHANG Hao, SHEN Jihong, ZHANG Tienan, et al. Improvement of chaos particle swarm optimization algorithm and analysis of its property[J]. Journal of System Simulation, 2008, 20(20): 54625466.
[17]张学军,李红,邓鹤.基于最小二乘支持向量机的红外小目标检测[J]. 应用数学, 2007, 20(增1): 163167.
ZHANG Xuejun, LI Hong, DENG He. The detection of small and weak infrared targets based on least squares support vector machine[J]. Mathematica Applicata, 2007, 20(sppp.1): 163167.

备注/Memo

备注/Memo:
收稿日期:2010-04-21.
基金项目:国家自然科学基金资助项目(60872065);航空科学基金资助项目(20105152026);南京大学计算机软件新技术国家重点实验室开放基金资助项目(KFKT2010B17).
通信作者:尹丹艳.
E-mail: ydy860125@163.com.
作者简介:
尹丹艳,女,1986年生,硕士研究生, 主要研究方向为图像处理、 目标检测与识别、信号处理等.
 吴一全, 男, 1963年生, 教授, 博士, 主要研究方向为图像处理与模式识别、目标检测与跟踪、智能信息处理等. 发表学术论文90余篇.
更新日期/Last Update: 2011-05-19