[1]刘富,于鹏,刘坤.采用独立分量分析Zernike矩的遥感图像飞机目标识别[J].智能系统学报,2011,6(01):51-56.
 LIU Fu,YU Peng,LIU Kun.Research concerning aircraft recognition of remote sensing images based on ICA Zernike invariant moments[J].CAAI Transactions on Intelligent Systems,2011,6(01):51-56.
点击复制

采用独立分量分析Zernike矩的遥感图像飞机目标识别(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第6卷
期数:
2011年01期
页码:
51-56
栏目:
出版日期:
2011-02-25

文章信息/Info

Title:
Research concerning aircraft recognition of remote sensing images based on ICA Zernike invariant moments
文章编号:
1673-4785(2011)01-0051-06
作者:
刘富12于鹏1刘坤1
1.吉林大学 通信工程学院,吉林 长春 130022;
2.哈尔滨工业大学 深空探测基础研究中心,黑龙江 哈尔滨 150001
Author(s):
LIU Fu12 YU Peng1 LIU Kun1
1.College of Communications Engineering, Jilin University, Changchun 130022, China;
2.Deep Space Exploration Research Center, Harbin Institute of Technology, Harbin 150001, China
关键词:
独立分量分析Zernike矩遥感图像飞机目标识别
Keywords:
independent component algorithm (ICA) Zernike invariant moments remote sensing images aircraft target recognition
分类号:
TP391.41
文献标志码:
A
摘要:
为了提高遥感图像目标自动识别系统的准确性,提出了一种新的采用独立分量分析(ICA) Zernike矩的飞机目标识别方法.首先对分割后的目标区域进行独立分量分析处理,将待识别目标形状转换到标准形式,然后对标准化后的图像目标提取Zernike矩作为特征向量进行识别.通过实验表明此方法具有鲁棒性,能有效地消除遥感图像目标尺度、旋转、平移、反转和扭曲影响,能够有效地识别遥感图像飞机目标.
Abstract:
To promote the accuracy of an automatic target recognition (ATR) system for remote sensing images, a novel feature recognition method was proposed for an airplane target based on the independent component algorithm (ICA) with Zernike invariant moments. First, the divided region of interest (ROI) was analyzed with the ICA method. Also, the shape of the target was changed to canonical form. Then, the invariant moments of normalized shapes could be extracted. They would potentially be used as a feature vector to do further recognition. The experiment demonstrates that the performance of this method is robust. It can eliminate the effects of scaling, rotation, translation, reflection, and skewing of the remote sensing image target. Furthermore, this method can recognize an airplane’s target from the remote sensing images effectively.

参考文献/References:

[1]安玮,李宏,徐晖,等.模式识别中的透射变换与仿射变换[J].系统工程与电子技术, 1999, 21(1): 5762.
AN Wei, LI Hong, XU Hui, et al. Projective tansformation and afine tansformation in pattern recognition[J]. Systems Engineering and Electronics, 1999, 21(1): 5762.
[2]ZULIANI M, BHAGAVATHY S, MANJUNATH S. Affineinvariant curve matching[C]//IEEE International Conference on Image Processing. Singapore, 2004, 5: 30413044.
[3]AVRITRIS Y, XIROUHAKIS Y, KOLLIAS S. Affineinvariant curve normalization for object shape representation, classification and retrieval[J]. Machine Vision and Applications, 2001, 13(2): 8094.
[4]WOLOVICH W A, UNEL M. The determination of implicit polynomial canonical curves[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(10): 10801090.
[5]LEE T W. Independent component analysis—theory and applications[M]. Boston, USA: Kluwer Academic Publishers, 1998: 87109.
[6]LEE J J, UDDIN M Z, KIM T S. Spatiotemporal human facial expression recognition using fisher independent component analysis and hidden Markov model[C]//The 30th Annual International IEEE EMBS Conference. Vancouver, Canada, 2008: 25462549.
[7]LI Yunxia, FAN Changyuan. Face recognition by nonnegative independent component analysis[C]//2009 Fifth International Conference on Natural Computation. Tianjin, China, 2009, 2: 555558.
[8]FUKUNAGA K. Introduction to statistical pattern recognition[M]. 2nd ed. San Diego, USA: Academic Press, 1990: 417425.
[9]HYVRINEN A. Fast and robust fixedpoint algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626634.
[10]王晓红,赵荣椿.矩技术在计算机图像学中的应用综述[J].中国体视学与图像分析, 2002, 7(1): 5357.
WANG Xiaohong, ZHAO Rongchun. Moment technique applications in computer image science: a review[J]. Chinese Journal of Stereology and Image Analysis, 2002, 7(1): 5357. 
[11]KHOTANZAD A, HONG Y H. Invariant image recognition by Zernike moments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5): 489497.
[12]郑楠.遥感图像中飞机目标的识别分类算法研究[D].长春:吉林大学电子科学与工程学院, 2007.
ZHENG Nan. Algorithm research for aircraft recognition and classification in remote sensing images[D]. Changchun: College of Electronic Science and Engineering, Jilin University, 2007.
[13]郝敏,麻硕士,侯振杰.Zernike矩的不变性与计算实现[J].内蒙古农业大学学报, 2009, 30(2): 222225.
HAO Min, MA Shuoshi, HOU Zhenjie. Invarance analysis and computation implementation of Zernike moments[J].Journal of Inner Mongolia Agricultural University, 2009, 30(2): 222225.

相似文献/References:

[1]刘琚,孙建德.独立分量分析的图像/视频分析与应用[J].智能系统学报,2011,6(06):495.
 LIU Ju,SUN Jiande.Independent component analysisbased image/video analysis and applications[J].CAAI Transactions on Intelligent Systems,2011,6(01):495.
[2]张鹏伟.采用ICA的公共信道多干扰源信号的自动识别方法[J].智能系统学报,2013,8(03):277.
 ZHANG Pengwei.Automatic recognition of multi-interference source signals in the common channel based on independent component analysis[J].CAAI Transactions on Intelligent Systems,2013,8(01):277.
[3]贲晛烨,张鹏,潘婷婷,等.线性插值框架下矩阵步态识别的性能分析[J].智能系统学报,2013,8(05):415.[doi:10.3969/j.issn.1673-4785.201110007]
 BEN Xianye,ZHANG Peng,PAN Tingting,et al.Performance analysis of matrix gait recognition under linear interpolation framework[J].CAAI Transactions on Intelligent Systems,2013,8(01):415.[doi:10.3969/j.issn.1673-4785.201110007]
[4]周双红,王玲玲.多特征值分解的稀疏混沌信号盲源分离算法研究[J].智能系统学报,2018,13(05):843.[doi:10.11992/tis.201703032]
 ZHOU Shuanghong,WANG Lingling.Research on multi-eigenvalue decomposition blind source separation algorithm for sparse chaotic signals[J].CAAI Transactions on Intelligent Systems,2018,13(01):843.[doi:10.11992/tis.201703032]

备注/Memo

备注/Memo:
收稿日期:2010-04-20.
基金项目:军队科研基金资助项目(9140A03040508HT0178).
通信作者:刘富.
E-mail: liufu@jlu.edu.cn.
作者简介:
刘富,男,1968年生,教授、博士生导师,主要研究方向为计算机视觉、模式识别等.承担国家“863”计划项目等30余项,获得发明专利2项,发表学术论文40余篇.
于鹏,男,1978年生,硕士研究生,主要研究方向为计算机视觉、模式识别.
 刘坤,男,1985年生,硕士研究生,主要研究方向为计算机视觉、模式识别.
更新日期/Last Update: 2011-04-13