[1]杨志君,叶东毅.动态学习的非负矩阵分解算法[J].智能系统学报,2010,5(4):320-326.
 YANG Zhi-jun,YE Dong-yi.A dynamic learning algorithm based on nonnegative matrix factorization[J].CAAI Transactions on Intelligent Systems,2010,5(4):320-326.
点击复制

动态学习的非负矩阵分解算法

参考文献/References:
[1]LEE D D, SEUNG H S. Learning the parts of objects by nonnegative matrix factorization[J]. Nature, 1999(401): 788-791.
[2]XU Wei, LU Xin, GONG Yihong. Document clustering based on nonnegative matrix factorization[C]//Proceedings of the 26th Annual International ACM SIGIR Conference, Toronto, Canada, 2003: 267-273.
[3]GUILLAMET D, VITRIA J. Nonnegative matrix factorization for face recognition[C]//Proc Conf Topics in Artificial Intelligence. Alberta, Canada, 2002: 336-344. 
[4]VIRTANEN T. Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2007, 15(3): 1066-1074. 
[5]BUCAK S S, GUNSEL B, GURSOY O. Incremental nonnegative matrix factorization for dynamic background modeling[C]//ICEIS International Workshop on Pattern Recognition in Information Systems. Funchal, Portugal, 2007: 107-116.
[6]CAO Bin, SHEN Dou, SUN Jiantao, et al. Detect and track latent factors with online nonnegative matrix factorization[C]//The 20th International Joint Conference on Artificial Intelligence. Hyderabad, India, 2007: 2689-2694. 
[7]CHEN W S, PAN B B, FANG B, et al. A novel constraint nonnegative matrix factorization criterion based incremental learning in face recognition[C]//Proceedings of International Conference on Wavelet Analysis and Pattern Recognition. Hong Kong, China, 2008: 292-297. 
[8] PETS Video Database[EB/OL]. http://ftp.pets.rdg.ac.uk/.
[9]DONOHO D, Stodden V. When does nonnegative matrix factorization give a correct decomposition into parts?[C]//Proceedings of the Seventeenth Annual Conference on Neural Information Processing Systems. Vancouver and Whistler, Canada, 2003: 101-108. 
[10]LI T, DING C. The relationships among various nonnegative matrix factorization methods for clustering[C]//Sixth IEEE International Conference on Data Mining. Hong Kong, China, 2006: 362-371.
相似文献/References:
[1]刘 敏,王国利.手写运动的协作基元合成分析方法[J].智能系统学报,2010,5(5):405.[doi:10.3969/j.issn.1673-4785.2010.05.005]
 LIU Min,WANG Guo-li.Handwriting movement analysis by synthesis of synergic primitives[J].CAAI Transactions on Intelligent Systems,2010,5():405.[doi:10.3969/j.issn.1673-4785.2010.05.005]
[2]徐慧敏,陈秀宏.图正则化稀疏判别非负矩阵分解[J].智能系统学报,2019,14(6):1217.[doi:10.11992/tis.201811021]
 XU Huimin,CHEN Xiuhong.Graph-regularized, sparse discriminant, non-negative matrix factorization[J].CAAI Transactions on Intelligent Systems,2019,14():1217.[doi:10.11992/tis.201811021]
[3]余沁茹,卢桂馥,李华.自适应图正则化的低秩非负矩阵分解算法[J].智能系统学报,2022,17(2):325.[doi:10.11992/tis.202102007]
 YU Qinru,LU Guifu,LI Hua.Nonnegative low-rank matrix factorization with adaptive graph neighbors[J].CAAI Transactions on Intelligent Systems,2022,17():325.[doi:10.11992/tis.202102007]

备注/Memo

收稿日期:2009-06-08.
基金项目:国家自然科学基金资助项目(60805042).
通信作者:叶东毅.E-mail: yiedy@fzu.edu.cn.
作者简介:
杨志君,男,1985年生,硕士研究生,主要研究方向为数据挖掘. 
叶东毅,男,1964年生,教授,博士生导师,主要研究方向为计算智能、数据挖掘.曾获得1988年度国家科技进步二等奖(主要成员)、1项福建省科学技术二等奖和2项福建省科学技术三等奖.出版著作和教材6部, 发表学术论文70余篇.

更新日期/Last Update: 2010-09-20
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134