[1]张 涛,费树岷,李晓东.基于GARBF神经网络及边界不变特征的车辆识别[J].智能系统学报,2009,4(03):278-272.
 ZHANG Tao,FEI Shu-min,LI Xiao-dong.Vehicle recognition using boundary invariants and a genetic algorithm trained radial basis function neural network[J].CAAI Transactions on Intelligent Systems,2009,4(03):278-272.
点击复制

基于GARBF神经网络及边界不变特征的车辆识别(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第4卷
期数:
2009年03期
页码:
278-272
栏目:
出版日期:
2009-06-25

文章信息/Info

Title:
Vehicle recognition using boundary invariants and a genetic algorithm trained radial basis function neural network
文章编号:
1673-4785(2009)03-0278-05
作者:
张 涛费树岷李晓东
东南大学 复杂工程系统测量与控制教育部重点实验室,江苏 南京 210096
Author(s):
ZHANG Tao FEI Shu-min LI Xiao-dong
Key Laboratory of Measurement and Control of Complex Systems of Engineering of Ministry of Education, Southeast University, Nanjing 210096, China
关键词:
车辆识别遗传算法径向基函数网络边界矩不变量
Keywords:
vehicle recognition genetic algorithms radial basis function neural network boundary invariant moments
分类号:
TP391.41
文献标志码:
A
摘要:
修正的边界不变矩在目标旋转、缩放和平移过程中能保持不变性.将其作为车辆目标的识别特征,并且利用遗传算法(GA)优化径向基函数(RBF)神经网络参数,能很好地实现对车辆目标的识别.实验表明,该方法在复杂背景下对目标的识别具有很强的鲁棒性,能快速准确地识别车辆类型;并且边界不变特征的引入,减少了数据运算量,提高了识别效率.
Abstract:
A method for vehicle recognition using the modified boundary invariant moments and a genetic algorithm trained radial basis function (GARBF) neural network was developed. The modified boundary invariant moments have the accustomed invariance for rotation, scaling and translation of targets, which can be used as the invariant characteristic vectors. Using these features as the inputs of a neural network, the vehicle targets can then be recognized accurately. In order to improve recognition accuracy and speed, the genetic algorithm (GA) was used to optimize the RBF parameters: centers, variance, and numbers of hidden nodes. Experimental results indicated that this method, which introduces invariants based on boundaries, yields robust target recognition with greatly reduced computation time and improved efficiency.

参考文献/References:

[1]XIA Limin. Vehicle recognition using boosting neural network classifiers[C]//Proceedings of the Sixth World Congress on Intelligent Control and Automation. Dalian, China, 2006: 96419644.
[2]GOYAL A, VERMA B. A neural network based approach for the vehicle classification[C]//Proceedings of Computational Intelligence in Image and Signal Processing. Honolulu, USA, 2007: 226231.
[3]SHIN P, JASSO H, TILAK S, et al. Automatic vehicle type classification using strain gauge sensors[C]//International Conference on Pervasive Computing and Communications Workshops. White Plains, USA, 2007: 425428.
[4] LIM T R, GUNTORO A T. Car recognition using Gabor filter feature extraction[C]//IEEE AsiaPacific Conference on Circuits and Systems. Singapore, 2002: 451455.
 [5]KI Y K, BAIK D K. Vehicleclassification algorithm for singleloop detectors using neural networks[J]. IEEE Transactions on Vehicular Technology, 2006, 55(6): 17041711.
 [6]LIN C T, YEH C M, CHUNG J F, et al. Support vector based fuzzy neural network for pattern classification[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(1): 3141.
[7]HU M K. Visual pattern recognition by moment invariants[J]. IEEE Transactions on Information Theory, 1962, 8(2): 179187.
[8]CHEN C C. Improved moment invariants for shape discrimination[J]. Pattern Recognition, 1993, 26(5): 683686.
[9]王连亮, 陈怀新, 图像识别的RSTC不变矩[J]. 数据采集与处理, 2006, 21(2): 225229.
 WANG Lianliang, CHEN Huaixin. Moment invariants of RSTC for image recognition[J]. Journal of Data Acquisition & Processing, 2006, 21(2): 225229.
 [10]TORRESMENDEZ L A, RUIZSUAREZ J C, SUCAR L E, et al. Translation, rotation, and scale invariant object recognition[J]. IEEE Transactions on Systems, Man and Cybernetics, 2000, 30(1): 125130.
[11]张坤华,王敬儒,张启衡, 基于边界不变特征的扩展目标识别方法[J]. 光电工程, 2005, 32(8): 15.
 ZHANG Kunhua, WANG Jingru, ZHANG Qiheng. Method for recognizing extended target based on boundary invariants[J]. OptoElectronic Engineering, 2005, 32(8): 15.
[12]卢 涛,陈德钊. 径向基网络的研究进展和评述[J]. 计算机工程与应用, 2005, 41(4): 6062.
LU Tao, CHEN Dezhao. A process review of radial basis function networks[J]. Computer Engineering and Applications, 2005, 41(4): 6062.
[13]陈国良.遗传算法及其应用[M]. 北京:人民邮电出版社, 1996.
 [14]HACHINO T, DEGUCHI K, TAKATA H. Identification of hammerstein model using radial basis function networks and genetic algorithm[C]//The Proceedings of the 5th Asian Control Conference. Melbourne, Australia, 2004: 2023.
[15]李红利,张晓彤,兰立柱, 等. 基于遗传算法的RBF神经网络的优化设计方法[J]. 计算机仿真, 2003, 20(11): 6769.
LI Hongli, ZHANG Xiaotong, LAN Lizhu, et al. A optimum design of RBF neural networks based on genetic algorithms[J]. Computer Simulation, 2003, 20(11): 6769
[16]LEUNG H, DUBASH N, XIE N. Detection of small objects in clutter using a GARBF neural network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 98118.

相似文献/References:

[1]周本达,陈明华.随机化均匀设计混合遗传算法求解图的二划分问题[J].智能系统学报,2009,4(01):91.
 ZHOU Ben-da,CHEN Ming-hua.Solving the 2-way graph partitioning problem using a genetic algorithm based on randomized uniform design[J].CAAI Transactions on Intelligent Systems,2009,4(03):91.
[2]康 琦,汪 镭,刘小莉,等.基于群体智能框架理念的遗传算法总体模式描述[J].智能系统学报,2007,2(05):42.
 KANG Qi,WANG Lei,LIU Xiao-li,et al.General mode description genetic algorithms based on a framework of swarm intelligence[J].CAAI Transactions on Intelligent Systems,2007,2(03):42.
[3]马 炫,张亚龙.基于遗传算法的大规模矩形件优化排样[J].智能系统学报,2007,2(05):48.
 MA Xuan,ZHANG Ya-long.A genetic algorithm for the layout of large scale rectang ular parts[J].CAAI Transactions on Intelligent Systems,2007,2(03):48.
[4]徐 雄.人工情感的进化控制系统实现[J].智能系统学报,2008,3(02):135.
 XU Xiong.Implementation of an evolutionary control system based on artificial emotion[J].CAAI Transactions on Intelligent Systems,2008,3(03):135.
[5]刘 胜,李高云,孙天英.一种基于种群多样度的实数编码并行遗传算法[J].智能系统学报,2008,3(05):423.
 L IU Sheng,L I Gao-yun,SUN Tian-ying.A real coding parallel genetic algorithm based on diversity of population[J].CAAI Transactions on Intelligent Systems,2008,3(03):423.
[6]秦世引,高书征.面向救援任务的地面移动机器人路径规划[J].智能系统学报,2009,4(05):414.[doi:10.3969/j.issn.1673-4785.2009.05.005]
 QIN Shi-yin,GAO Shu-zhen.Path planning for mobile rescue robots in disaster areas with complex environments[J].CAAI Transactions on Intelligent Systems,2009,4(03):414.[doi:10.3969/j.issn.1673-4785.2009.05.005]
[7]周树德,孙增圻.遗传算法中的联结关系[J].智能系统学报,2009,4(06):483.[doi:10.3969/j.issn.1673-4785.2009.06.003]
 ZHOU Shu-de,SUN Zeng-qi.Linkage in genetic algorithms[J].CAAI Transactions on Intelligent Systems,2009,4(03):483.[doi:10.3969/j.issn.1673-4785.2009.06.003]
[8]程显毅,巩向普.改进的模糊C-均值算法在医学图像分割中的应用[J].智能系统学报,2010,5(01):80.
 CHENG Xian-yi,GONG Xiang-pu.An improved fuzzy Cmeans algorithm for segmentation of medical images[J].CAAI Transactions on Intelligent Systems,2010,5(03):80.
[9]王斐,闻时光,吴成东,等.基于模糊逻辑的多移动机器人自适应协作围捕[J].智能系统学报,2011,6(01):44.
 WANG Fei,WEN Shiguang,WU Chengdong,et al.Adaptive cooperative hunting for multiple mobile robots based on fuzzy logic[J].CAAI Transactions on Intelligent Systems,2011,6(03):44.
[10]夏琳琳,张健沛,初妍.计算智能在移动机器人路径规划中的应用综述[J].智能系统学报,2011,6(02):160.
 XIA Linlin,ZHANG Jianpei,CHU Yan.An application survey on computational intelligence for path planning of mobile robots[J].CAAI Transactions on Intelligent Systems,2011,6(03):160.

备注/Memo

备注/Memo:
收稿日期:2008-03-10.
基金项目:国家自然科学基金重点资助项目(60835001).
通信作者:张 涛.E-mail:tzhangcn@gmail.com.
作者简介:
张 涛,男,1981年生,博士研究生,主要研究方向为计算机视觉、图像处理、模式识别等.发表学术论文6篇.
 费树岷,男,1961年生,教授,博士生导师,博士后,主要研究方向为非线性控制系统设计和综合,混杂系统分析、建模与控制,神经网络控制,时滞系统控制等.近年来,参与国家自然科学基金(含重点)项目4项、国家“863”高科技发展计划项目2项,实际应用项目10项.发表学术论文90余篇,出版专著(合著)1部.
 李晓东,男,1974年生,博士研究生,主要研究方向为图像处理、模式识别等.发表学术论文9篇.
更新日期/Last Update: 2009-09-14