[1]陈 杰,潘 峰,王光辉.粒子群优化方法在动态优化中的研究现状[J].智能系统学报,2009,4(03):189-198.
 CHEN Jie,PAN Feng,WANG Guang-ui.Review of the PSO research in dynamic environments[J].CAAI Transactions on Intelligent Systems,2009,4(03):189-198.
点击复制

粒子群优化方法在动态优化中的研究现状(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第4卷
期数:
2009年03期
页码:
189-198
栏目:
出版日期:
2009-06-25

文章信息/Info

Title:
Review of the PSO research in dynamic environments
文章编号:
1673-4785(2009)03-0189-10
作者:
陈   杰1 潘  峰12 王光辉1
1.北京理工大学 复杂系统智能控制与决策教育部重点实验室,北京100081;
2.Department of Electrical and Computer Engineering, Purdue School of Engineering and Technology, Indiana UniversityPurdue University Indianapolis, Indianapolis, IN 46202, USA
Author(s):
CHEN Jie1 PAN Feng12 WANG Guang-ui1
1.Key Laboratory of Complex System Intelligent Control and Decision of Ministry of Education, Beijing Institute of Technology, Beijing 100081, China;
2.Department of Electrical and Computer Engineering, Purdue School of Engineering and Technology, Indiana UniversityPurdue University Indianapolis, Indianapolis, IN 46202, USA
关键词:
粒子群优化方法动态环境优化检测策略应对策略性能评价
Keywords:
particle swarm optimization (PSO) optimization in dynamic environment detection strategy response strategy performance evaluation
分类号:
TP391.41
文献标志码:
A
摘要:
作为一种基于群智能的并行随机优化方法,粒子群优化算法(PSO)在优化求解问题中体现出了良好的性能.从提出至今引起了广泛的关注,研究成果也不断涌现.从2000年开始,PSO被用于动态优化问题中.这对PSO的研究提出了新的挑战,对于动态问题的优化不再是在解空间中找到一个最优点,而是要尽可能地在解空间中跟踪运动变化的最优点.对目前为止对于PSO在动态环境优化问题的研究内容进行了分析和总结,介绍了针对动态环境优化问题PSO的改进方法、对环境变化的检测和应对策略、优化性能评价的一系列方法以及各种试验及应用案例.
Abstract:
Particle swarm optimization (PSO), a parallel random optimization method based on swarm intelligence, exhibits good performance for optimization problems. Since 2000, PSO has been applied to optimization problems in dynamic environments. The challenge with PSO is that the objective is not only to locate an optimum, but also to track that moving optimum as closely as possible. This paper presented the latest developments of PSO in dynamic environments. Various research approaches were reviewed, including improvements in PSO, dynamic change detection, response strategies, performance evaluation and experiments used in researching dynamic problems.

参考文献/References:

[1]KENNEDY J, EBERHART R C. Particle swarm optimization[C]//Proc IEEE International Conference on Neural Networks. Perth, Australia, 1995:19421948.
[2]姚耀中, 徐玉如. 粒子群优化算法分析[J]. 哈尔滨工程大学学报, 2007, 28(11): 12421246.
 YAO Yaozhong, XU Yuru. Parameter analysis of particle swarm optimization algorithm[J]. Journal of Harbin Engineering University, 2007, 28(11): 12421246.
[3]FOGEL L J, OWENS A J, WALSH M J. Artificial intelligence through simulated evolution[M]. New York: John Wiley & Sons, Inc., 1966.
[4]蒋建国, 吴 , 夏 . 自应用粒子群算法求解Agent 联盟[J]. 智能系统学报, 2007, 2(2): 6973.
JIANG Jianguo, WU Qiong, XIA Na. Solving for Agent coaliton using adaptive particle swarm optimization algorithm[J]. CAAI Transactions on Intellligent Systems, 2007, 2(2): 6973. 
[5]王冰  , 刁 鸣, 高洪元. 一种改进的粒子群算法求解背包问题[J]. 应用科技, 2008, 35(3): 1619.
 WANG Bing, DIAO Ming, GAO Hongyuan. An improved particle swarm optimization algorithm for knapsack problems[J]. Applied Science and Technology, 2008, 35(3): 1619.
[6]CARLISLE A, DOZIER G. Adapting particle swarm optimization to dynamic environments[C]//Proceedings of International Conference on Artificial Intelligence. Las Vegas, USA, 2000: 429434.
[7]EBERHART R C,SHI Y H. Tracking and optimizing dynamic systems with particle swarms[C]// Proceedings of the 2001 Congress on Evolutionary Computation. Piscataway, USA, 2001: 94100.
[8]潘 峰 , 陈  杰, 甘明刚, 等. 粒子群优化算法模型分析[J]. 自动化学报, 2006,32(3): 368377.
 PAN Feng, CHEN Jie, GAN Minggang, et al.Model analysis of particle swarm optimizer[J]. Acta Automatica Sinica, 2006,32(3): 368377.
[9]HU X, EBERHART R C. Adaptive particle swarm optimization: detection and response to dynamic systems[C]//Proceedings of the IEEE Congress on Evolutionary Computation(CEC’02). Honolulu, USA, 2002: 16661670
 [10]单世民, 邓贵仕. 动态环境下一种改进的自适应微粒群算法[J]. 系统工程理论与实践, 2006(3): 3944.
 SHAN Shimin, DENG Guishi. Improved adaptive particle swarm optimizer in dynamic environment[J]. Systems Engineering—Theory & Practice, 2006(3): 3944.
 [11]ESQUIVEL S C, COELLO COELLO C A. Particle swarm optimization in nonstationary environments[J]. Lecture Notes in Computer Science, 2004, 3315: 757766.
 [12]BLACKWELL T M, PETER J B. Dynamic search with charged swarms[C]//Proceedings of the Genetic and Evolutionary Computation Conference. San Francisco, USA: Morgan Kaufmann Publishers Inc, 2002: 1926.
 [13]BLACKWELL T M, BENTLEY P. Don’t push me! collisionavoiding swarms[C]//Proceedings of the IEEE Congress on Evolutionary Computation(CEC 2002). Honolulu, USA, 2002: 16911696.
 [14]BLACKWELL T.Particle swarm optimization in dynamic environments[M]//YANG S X, ONG Y S, JIN Y C. Evolutionary computation in dynamic and uncertain environments. Heidelberg: Springer, 2007, 51: 2949.
 [15]JATMIKO W, SEKIYAMA K, FUKUDA T. A PSObased mobile sensor network for odor source localization in dynamic environment: theory, simulation and measurement[C]// Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2006). Vancouver, Canada, 2006: 10361043.
 [16]MULLEN P B, MONSON C K, SEPPI K D, et al. Particle swarm optimization in dynamic pricing[C]//IEEE Congress on Evolutionary Computation(CEC 2006). Vancouver, Canada, 2006: 12321239.
 [17]PAN Guanyu, DOU Quansheng, LIU Xiaohua. Performance of two improved particle swarm optimization in dynamic optimization environments[C]//Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications(ISDA’06). Washington DC, USA: IEEE Computer Society, 2006, 2: 10241028.
 [18]窦全胜, 周春光, 徐中宇, 等. 动态优化环境下的群核进化粒子群优化方法[J]. 计算机研究与发展, 2006,43(1): 8995.
 DOU Quansheng, ZHOU Chungguang, XU Zhongyu, et al. Swarmcore evolutionary particle swarm optimization in dynamic optimization environments[J]. Journal of Computer Research and Development, 2006, 43(1): 8995. [19]林川, 冯全源. 利用有效信息的粒子群优化算法[J]. 哈尔滨工程大学学报, 2008, 29(11): 12271231.
 LIN Chuan, FENG Quanyuan. An effectively informed particle swarm optimization algorithm[J]. Journal of Harbin Enginerring University, 2008, 29(11): 12271231.
[20]BRANKE J, KAUβLER T, SCHMIDT C, et al.A multipopulation approach to dynamic optimization problems[M]//Adaptive Computing in Design and Manufacture. Belin: Springer, 2000: 299308.
 [21]OPPACHER F, WINEBERG M. The shifting balance genetic algorithm: improving the GA in a dynamic environment[C]//Proc of Genetic and Evolutionary Computation Conf. Orlando, USA, 1999: 504510
[22]BLACKWELL T, BRANKE J. Multiswarm optimization in dynamic environments[J]. Lecture Notes in Computer Science, 2004, 3005: 489500.
 [23]PARROTT D, LI Xiaodong. A particle swarm model for tracking multiple peaks in a dynamic environment using speciation[C]//Proceedings of the 2004 Congress on Evolutionary Computation(CEC 2004). Piscataway, USA, 2004, 1: 98103
 [24]PARROTT D,LI Xiaodong.Locating and tracking multiple dynamic optima by a particle swarm model using speciation[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(4): 440458.
 [25]LI Xiaodong, BRANKE J, BLACKWELL T. Particle swarm with speciation and adaptation in a dynamic environment[C]//Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York, USA: ACM Press, 2006: 5158.
 [26]BLACKWELL T, BRANKE J.Multiswarms, exclusion, and anticonvergence in dynamic environments[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(4): 459472.
 [27]王光辉, 陈杰 , 潘峰.多种群协同粒子群优化算法求解动态环境优化问题[C]//第27届中国控制会议. 昆明, 2008, 5: 4348.
 WANG Guanghui, CHEN Jie, PAN Feng, Collaborated multiswarms particle swarm optimizer for dynamic environment optimization[C]//Proceedings of the 27th Chinese Control Conference. Kunming, 2008, 5: 4348.
 [28]CUI X, HARDIN C T, RAGADE R K, et al. Tracking nonstationary optimal solution by particle swarm optimizer[C]//Proceedings of the Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS International Workshop on SelfAssembling Wireless Networks(SNPD/SAWN 2005). Washington DC, USA: IEEE Computer Society, 2005: 133138 .
[29]CARLISLE A, DOZLER G. Tracking changing extrema with adaptive particle swarm optimizer[C]//Proceedings of the 5th Biannual World Automation Congress. Orlando, USA, 2002: 265270.
[30]CARLISLE A J. Applying the particle swarm optimizer to nonstationary environments[D]. Auburn, AL, USA: Auburn University, 2002.
 [31]VEERAMACHANENI K, OSADCIW L. Dynamic particle swarm optimizer for information fusion in non stationary sensor networks[C]//Proceedings of IEEE Swarm Intelligence Symposium. Indianapolis, USA, 2006.
 [32]LUNG R I, DUMITRESCU D. A new collaborative evolutionaryswarm optimization technique[C]//Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation. New York, USA: ACM Press, 2007: 28172820.
[33]BIED S, LI Xiaodong. Informative performance metrics for dynamic optimisation problems[C]// Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation. New York, USA: ACM Press, 2007: 1825
[34]ZAHARIE D, ZAMFIRACHE F. Diversity enhancing mechanisms for evolutionary optimization in Static and dynamic environments[C]//Proc of 3rd RomanianHungarian Joint Symposium on Applied Computational Intelligence. Timisoara, Romania, 2006: 460471.
[35]LI Xiaodong, DAM K H. Comparing particle swarms for tracking extrema in dynamic environments[C]// The 2003 Congress on Evolutionary Computation(CEC’03). Canberra, Australia, 2003, 3: 17721779.
[36]MORRISON R W. Performance measurement in dynamic environments[C]// BRANKE J. GECCO Workshop on Evolutionary Algorithms for Dynamic Optimization Problems (EvoDOP 2003). Chicago, USA, 2003: 58.
[37]MORRISON R W. Designing evolutionary algorithms for dynamic environments[M]. [S.l.]:SpringerVerlag, 2004.
 [38]BLACKWELL T M, PETER J B. Dynamic search with charged swarms[C]//Proceedings of the Genetic and Evolutionary Computation Conference. San Francisco, USA: Morgan Kaufmann Publishers Inc, 2002: 1926.
 [39]MOSER I. Review all currently known publications on approaches which solve the moving peaks problem[R].Melbourne: Swinburne Univesity of Technology, 2007
[40]〖ZK(〗BRANKE J,SCHMECK H.Designing evdutionary algorithms for dynamic optimizations problems[M]//TSUTSUI S, GHOSH A.Advances in evolutionary computing: theory and applications.New York, USA: SpringerVerlag, 2003: 239262.

备注/Memo

备注/Memo:
收稿日期:2008-08-22
基金项目: 高等学校优秀青年教师教学科研奖励计划资助项目(20010248).
通信作者:潘 峰. Email: andropan@gmail.com.
作者简介:
陈 杰,男,1965年生,教授、博士生导师、博士,中国自动化学会控制理论专业委员会委员.主要研究方向为复杂系统、多目标优化与决策、智能控制、非线性控制和优化方法等.2005年获“全国优秀科技工作者”荣誉称号,2001年获教育部“全国高校青年教师奖”,同年被列入我国国防科技工业“511人才工程”学术带头人.获部级科技进步奖12项,北京市优秀教学成果二等奖2项.完成并通过鉴定的科研项目20余项.发表学术论文100余篇,出版教材1部,译著1部.
潘 峰,男,讲师,博士.主要研究方向为智能控制、计算智能、人工智能、伺服系统和机器人等.已获部级科技进步奖1项,发表学术论文20余篇.
王光辉,男,1987年生,博士研究生,主要研究方向为智能算法、计算智能、优化设计.
更新日期/Last Update: 2009-08-31