[1]吴晓威,张井岗,赵志诚.基于灰色预测的自适应内模PID双重控制器设计[J].智能系统学报,2008,3(01):71-76.
 WU Xiao-wei,ZHANG Jing-gang,ZHAO Zhi-cheng.Design of a dual controller with an adaptive internal model and PID in conjunction with grey prediction[J].CAAI Transactions on Intelligent Systems,2008,3(01):71-76.
点击复制

基于灰色预测的自适应内模PID双重控制器设计(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第3卷
期数:
2008年01期
页码:
71-76
栏目:
出版日期:
2008-02-25

文章信息/Info

Title:
Design of a dual controller with an adaptive internal model and PID in conjunction with grey prediction
文章编号:
1673-4785(2008)01-0071-06
作者:
吴晓威张井岗赵志诚
太原科技大学电子与信息工程学院,山西太原030024
Author(s):
WU Xiao-wei ZHANG Jing-gang ZHAO Zhi-cheng
College of Electronics and Information Engineering, Taiyuan University of Scien ce &Technology, Taiyuan 030024, China
关键词:
内模控制PID控制灰色预测模型
Keywords:
internal model control grey prediction model nonli near system
分类号:
TP273
文献标志码:
A
摘要:
针对一类非线性系统,提出一种基于灰色预测的自适应内模PID双重控制方法.把由系统的输入输出数据得到的灰色预测模型作为系统的内部模型,并在基本的内模控制结构上增加PID控制器,加快了跟踪误差收敛速度, 内模控制的性能明显改善.仿真结果表明,该控制方法简单而有效, 内模PID双重控制较单一内模控制具有更好的系统性能.
Abstract:
A dual controller strategy with an adaptive internal model in conjunction with g rey prediction and PID controller is presented for nonlinear systems. The grey p rediction model, which was obtained from inputoutput data, was employed as the internal model of the system. A PID controller was added to the original IMC st ructure in order to speed up tracking of error convergence and improve IMC contr oller performance. Simulation results demonstrate that the proposed control str ategy is simpler and more effective, indicating that a dual IMC and PID controll er has better performance than a controller with only IMC.

参考文献/References:

[1]赵 曜. 内模控制发展综述[J]. 信息与控制, 2000, 29 (6) : 526531.
ZHAO Yao. A survey of development of internal model control[J]. Information a nd Control, 2000, 29(6):526531.
[2]周 涌, 陈庆伟, 胡维礼. 内模控制研究的新发展[J]. 控制理论与应用, 2004, 21(3): 475482.
ZHOU Yong,CHEN Qingwei, HU Weili. New developments of research on internal mod el control[J]. Control Theory & Applications, 2004, 21(3): 475482.
[3]LI S, LI J H. IMCPID control of ultrasonic motor servo system b as ed on neu ral network[C]// Proceedings of the 6th World Congress on Control and Automati o n. Dalian, China, 2006.
[4]LI H X, DENG H. An approximate internal modelbased neural control for un k no wn nonlinear discrete processes[J]. IEEE Transactions on Neural Networks, 2006 , 17(3): 695670.
[5]HABER R E, ALIQUE J R. Nonlinear internal model control using neural netwo rk s: an application for machining processes[J]. Neural Comput & Applic, 2004,13: 4755.
[6]吕朝霞,吴晓蓓, 郭 建, 等. 基于小波网络的非线性内模控制[J]. 控制与决策,2001 ,16 (1) :6568. LAU¨U
 Zhaoxia, WU Xiaobei, GUO Jian, et al. Nonlinear internal model contro l based on wavelet network [J].Control and Decision,2001,16(1):6568.
[7]HABER R E. Nonlinear internal model control using neural networks an d fuzzy logic: application to an electromechanical process[J]. LNCS, 2006, 2657: 351  360.
[8]党映农,韩崇昭. 基于Volterra 级数模型的内模控制方法[J ] .西安交通大学学报,2001 ,35(4) :385389.
DANG Yingnong, HAN Chongzhao. Internal model control for uncertain Volterra seri es system [J]. Journal of Xi’an Jiaotong University, 2001,35(4):385389. 
[9]刘士荣,林卫星,俞金寿,等. 非线性动态系统神经模糊建模与内模/PID双重控制系统设计[J]. 控制理论与应用,2004,21(4):553560.
LIU Shirong, LIN Weixing, YU jinshou, et al. Neurofuzzy modeling for nonlinear dynamic systems and double control system design with internal model control and PID co ntrol[J]. Control Theory & Applications,2004,21(4):553560.
[10]HE M J, CAI W J ,WU B F. Design of decentralized IMCPID control l er based on dRi analysis[J]. American Institute of Chemical Engineers, 2006,52(11):385 23863. 
[11]LI C Y, HUANG T L. Optimal design for the grey prediction PID controller fo r power system stabilizers by evolutionary programming [C]// Proceedings of th e 2 004 IEEE International Conference on Networking, Sensing & Control.Taipei, China,2004.
[12]DING C C, LEE K T. Optimal design for power system dynamic stabilizer by grey prediction PID control[C]// IEEE ICIT’02. Bangkok, Thailand, 2002.
[13]WU W Y, CHEN S P. A prediction method using the grey model GMC(1,n) co mbi ne d with the grey relational analysis: a case study on internet access population forecast[J]. Applied Mathematics and Computation,2005,169: 198217.
[14]TIEN T L.A research on the deterministic grey dynamic model with multiple i nputs DGDMMI(1,1,1)[J]. Applied Mathematics and Computation, 2003, 139:40141 6 .

相似文献/References:

[1]王海稳,张井岗,曲俊海.基于PSO算法的目标值前馈型二自由度PID控制器的优化设计[J].智能系统学报,2006,1(02):58.
 WANG Hai-wen,ZHANG Jing-gang,QU Jun-hai.Optimal design for two degreeoffreedom PID controller based on PSO algorithm[J].CAAI Transactions on Intelligent Systems,2006,1(01):58.
[2]张 波,刘冀伟,崔朝辉,等.双目视觉模型移动目标跟踪系统[J].智能系统学报,2010,5(05):400.[doi:10.3969/j.issn.1673-4785.2010.05.004]
 ZHANG Bo,LIU Ji-wei,CUI Zhao-hui,et al.Design and implementation of a binocular vision moving target tracking system[J].CAAI Transactions on Intelligent Systems,2010,5(01):400.[doi:10.3969/j.issn.1673-4785.2010.05.004]
[3]张文辉,周启航,齐乃明.模糊CMAC的柔性空间机器人轨迹跟踪自学习控制[J].智能系统学报,2012,7(05):457.
 ZHANG Wenhui,ZHOU Qihang,QI Naiming.Trajectory tracking selfstudy control for flexible space manipulators with fuzzy CMAC[J].CAAI Transactions on Intelligent Systems,2012,7(01):457.
[4]林峰,杨忠程,冯英,等.利用场景光照识别优化的双目活体检测方法[J].智能系统学报,2020,15(1):160.[doi:10.11992/tis.201912026]
 LIN Feng,YANG Zhongcheng,FENG Ying,et al.Binocular camera based face liveness detection with optimized scene illumination recognition[J].CAAI Transactions on Intelligent Systems,2020,15(01):160.[doi:10.11992/tis.201912026]

备注/Memo

备注/Memo:
收稿日期:2007-07-17.
基金项目:
山西省自然科学基金资助项目(2007011049);
山西省教育厅科技资助项目(20051311).
作者简介:
吴晓威, 女,1982年生,硕士研究生,主要研究方向为智能控制和鲁棒控制.
张井岗,男,1965年生,教授,硕士生导师,主要研究方向为鲁棒控制和智能控制及其应用.主持和完成国家“九五”攻关项目、山西省自然科学基金项目、山西省青年科学基金项目等研究课题,发表学术论文60多篇,其中20余篇分别被EI、SCI、ISTP收录.
赵志诚,男,1970年生,副教授,博士研究生,主要研方向为智能控制,参加和完成国家“ 九五”攻关项目、山西省自然科学基金项目、山西省青年科学基金项目和横向科技开发项目等多项,发表论文多篇.
通讯作者:吴晓威.E-mail:wxwei2002467@126.com.
更新日期/Last Update: 2009-05-10