[1]杨 珺,张化光.基于模糊双曲模型的积分滑模控制[J].智能系统学报,2008,3(01):62-65.
 YANG Jun,ZHANG Hua-guang.Design of integral sliding mode controller based on fuzzy hyperbolic model[J].CAAI Transactions on Intelligent Systems,2008,3(01):62-65.
点击复制

基于模糊双曲模型的积分滑模控制(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第3卷
期数:
2008年01期
页码:
62-65
栏目:
出版日期:
2008-02-25

文章信息/Info

Title:
Design of integral sliding mode controller based on fuzzy hyperbolic model
文章编号:
1673-4785(2008)01-0062-04
作者:
杨  珺 张化光
东北大学信息科学与工程学院,辽宁沈阳110004
Author(s):
YANG Jun ZHANG Hua-guang
School of Information Science and Engineering, Northeastern University, Shenyan g 110004, China
关键词:
积分滑模控制 模糊双曲模型 非线性系统
Keywords:
integral sliding mode control fuzzy hyperbolic model nonlinear system
分类号:
TP273
文献标志码:
A
摘要:
针对一般形式的非线性系统,提出一种基于模糊双曲模型(FHM)的积分滑模控制器设计方法.利用模糊双曲模型来表述这类连续非线性系统.构建出积分滑模面,利用线性矩阵不等式(LMI)方法得到滑模动态渐近稳定的充分条件.设计了积分滑模控制器,保证了系统的状态轨迹能够在有限时间内到达滑模面上并且保持在它上面运动.仿真结果表明了该方法的有效性.
Abstract:
An integral sliding mode controller design method is presented based on fuzzy hyperbolic model (FHM) for general form nonlinear systems. First, an FHM is employed to represent a class of nonlinear continuoustime systems. Then an i ntegral sliding surface is constructed. A sufficient condition is derived to gua rantee the asymptotical stability of the sliding dynamics in terms of linear mat rix inequality (LMI). Next, the synthesized sliding mode controller guarantees t he reachability of the specified sliding surface in finite time interval. Finall y, a simulation example is provided to demonstrate the effectiveness of the prop osed method.

参考文献/References:

[1]UTKIN V I. Sliding modes in control and optimization [M]. New York: Spr ingerVerlag, 1992.
[2]CHEN Y C, CHANG S. Output tracking design of affine nonlinear plant via v ariable structure system [J]. IEEE Trans Autom Control, 1992, 37(11): 182318 2 8.
[3]ZHENG F, WANG Q W, LEE T H. Output tracking control of MIMO fuzzy nonline ar systems using variable structure control approach [J]. IEEE Trans Fuzzy Syst, 2002, 10(6): 686697.
[4]NIU Y, HO D W C, LAM J. Robust integral sliding mode control for uncertai n stochastic systems with timevarying delay [J]. Automatica, 2005,41(5): 873 880.
[5]WANG L X, MENDEL J M. Fuzzy basis functions, universal approximation and or thogonal leastsquare learning [J]. IEEE Trans Neural Netw, 1992, 3(5): 807 8 14.
 [6]WANG H O, TANAKA K, GRIFFIN M F. An approach to fuzzy control of nonlinea r systems: stability and design issues [J]. IEEE Trans Fuzzy System, 1996, 4(1): 1423.
[7]ZHANG H, QUAN Y. Modeling, identification and control of a class of nonli near system [J]. IEEE Trans Fuzzy Syst, 2001, 9(2): 349354.
[8]ZHANG H, WANG Z. Chaotifying fuzzy hyperbolic model using adaptive invers e optimal control approach [J]. Int J Bifurc Chaos, 2004, 14(10): 35053517.
[9]张化光, 全永兵. 基于模糊双曲正切模型的一类稳定的模糊控制器设计[J]. 控制与决策, 2002, 17(6): 956957.
 ZHANG Huaguang, QUAN Yongbing. Design of stable fuzzy controller based on fuzzy hyperbolic model [J]. Control and Decision, 2002, 17(6): 956957.
[10]YANG J, LIU D, FENG J, et al. Controller design for a class of no nlinear s ystems based on fuzzy hyperbolic model[C]// Proc of WCICA06. Dalian, Chin a, 2006.
[11]ZHANG H, YANG J. Delaydependent stability of a class of nonlinear syst ems with time delays based on fuzzy hyperbolic model [C]// ICIC 2006. [S.l.]:Springer, 2006.
[12]APKARIAN P, TUAN H D, BERNUSSOU J. Continuoustime analysis, eigenstruc tur e assignment, and synthesis with enhanced linear matrix inequalities characteriz ations [J]. IEEE Trans Autom Control, 2001, 46(12): 19411946.

备注/Memo

备注/Memo:
收稿日期:2007-060-11.
基金项目:
国家自然科学基金资助项目(60325311, 60534010, 6057 20 70, 60521003);
教育部长江学者及创新团队计划资助项目(IRT0421).
 作者简介:
杨 珺,男,1976年生,博士研究生,主要研究方向为模糊控制、非线性系统、智能算法等.  
 张化光,男,1959年生,教授,博士生导师,主要研究方向为复杂系统的智能控制、非线性控制、混沌控制等.发表论文200余篇,出版专著4部.
通讯作者:杨 珺.E-mail:yangjun@ise.neu.edu.cn.
更新日期/Last Update: 2009-05-10