[1]吴 青,刘三阳,郑 巍.基于乘性规则的支持向量机[J].智能系统学报,2007,2(2):74-77.
 WU Qing,LIU San-yang,ZHENG Wei.Support vector machines based on multiplicative updates[J].CAAI Transactions on Intelligent Systems,2007,2(2):74-77.
点击复制

基于乘性规则的支持向量机

参考文献/References:
[1]VAPNIK V. Nature of Statistical Learning Theory [M].New York: S pringer Verlag,2000
[2]BURGES C J C. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2 (2): 121-167.
【3]SHA F, SAUL L K,LEE D D. Multiplicative updates for nonnegative qu ad ratic programming in support vector machines [A]. Advances in Neural and Infor mation Processing Systems[C].Cambridge, MA,2003.
[4]陆从德,张太镒,胡金燕.基于乘性规则的支持向量域分类器 [J].计算机学报, 2004, 27(5): 690-694.
?LU Congde,ZHANG Taiyi,HU Jinyan. Support vector domain classifier based on mu ltiplicative updates [J]. Chinese Journal of Computers, 2004, 27(5): 691-694.
[5]SHA F,SAUL L K,LEE D. Multiplicative updates for large margin classi fiers[A]. Lecture notes in computer science[C].Washington,2003.
[6]PLATT J C. Sequential minimal optimization: a fast algorithm for tr aining support vector machines [Z]. In Scholkopf B, Burges C, Smola A, edito rs, Advances in Kernel Methods: Support Vector Machines. Cambridge, MA: MIT Pres s, 1998.
[7]CRISTIANINI N, CAMPBELL C, SHAWETAYLOR J. Multiplicative updatings for support vector machines[A]. In proceedings of ESANN[C].Brussels, 1999 .
[8]SHA F, SAUL L K, LEE D D. Multiplicative updates for nonnegative qu adratic programming in support vector machines[A]. In S.Becker, S.Thrun, and K . Obermayer, editors, Advances in Neural and Information Processing Systems[C] . Cambridge, MA,2003.
相似文献/References:
[1]王书舟,伞 冶.支持向量机的训练算法综述[J].智能系统学报,2008,3(6):467.
 WANG Shu-zhou,SAN Ye.A survey on training algorithms for support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3(2):467.
[2]陈小娥,陈昭炯.多类SVM在图像艺术属性分类中的应用研究[J].智能系统学报,2009,4(2):157.
 CHEN Xiao-e,CHEN Zhao-jiong.An application of multiclass SVM in the classification of artistic attributes of images[J].CAAI Transactions on Intelligent Systems,2009,4(2):157.
[3]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(1):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2(2):69.
[4]张 亮,朱振峰,赵 耀,等.基于镜头的鲁棒视频广告检测[J].智能系统学报,2007,2(2):83.
 ZHANG Liang,ZHU Zhen-feng,ZHAO Yao,et al.Video commercial detection based on the robustness of sho t[J].CAAI Transactions on Intelligent Systems,2007,2(2):83.
[5]赵春晖,陈万海,万 建.一种改进的多类支持向量机超光谱图像分类方法[J].智能系统学报,2008,3(1):77.
 ZHAO Chun-hui,CHEN Wan-hai,WAN jian.An improved hyperspectral image classification method for a multiclass support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3(2):77.
[6]杨志豪,洪 莉,林鸿飞,等.基于支持向量机的生物医学文献蛋白质关系抽取[J].智能系统学报,2008,3(4):361.
 YANG Zhi-hao,HONG L i,L IN Hong-fei,et al.Extraction of information on prote in2prote in interaction from biomedical literatures using an SVM[J].CAAI Transactions on Intelligent Systems,2008,3(2):361.
[7]刘? 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(3):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4(2):199.
[8]刘 胜,李高云,江 娜.SVM性能的免疫鱼群多目标优化研究[J].智能系统学报,2010,5(2):144.
 LIU Sheng,LI Gao-yun,JIANG Na.Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance[J].CAAI Transactions on Intelligent Systems,2010,5(2):144.
[9]杨振兴,刘久富,孙 琳.不变量的程序潜在错误预测[J].智能系统学报,2010,5(4):327.
 YANG Zhen-xing,LIU Jiu-fu,SUN Lin.Using invariants to predict the potential for errors in programs[J].CAAI Transactions on Intelligent Systems,2010,5(2):327.
[10]古丽娜孜,孙铁利,伊力亚尔,等.一种基于主动学习支持向量机哈萨克文文本分类方法[J].智能系统学报,2011,6(3):261.
 GU Linazi,SUN Tieli,YI Liyaer,et al.An approach to the text categorization of the Kazakh language based on an active learning support vector machine[J].CAAI Transactions on Intelligent Systems,2011,6(2):261.

备注/Memo

收稿日期:2006-09-30.
基金项目:国家自然科学基金资助项目(60574075)
作者简介:
吴 青,女,1975年生,博士研究生,主要研究方向为模式识别、支持向量机、最优化理论及其应用.E-mail: qwu@mail.xidian.edu.cn.
刘三阳,男,1959年生,博士生导师,主要研究方向为最优化理论方法、数据挖掘、支持向量机.承担并完成多个国家自然科学基金项目. 在国内外重要期刊上发表论文200多篇,被SCI、EI检索70余篇.E-mail: liusanyang@126.c om.
郑 巍,男,1982年生,博士研究生,主要研究方向为人工智能、数据挖掘. E-mail: open2123@126.com

更新日期/Last Update: 2009-05-06
Copyright @ 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134