[1]王科俊,郭庆昌.基于粒子群优化算法和改进的Snake模型的图像分割算法[J].智能系统学报,2007,2(01):53-58.
 WANG Ke-jun,GUO Qing-chang.Image segmentation algorithm based on the PSO and improved Snake model[J].CAAI Transactions on Intelligent Systems,2007,2(01):53-58.
点击复制

基于粒子群优化算法和改进的Snake模型的图像分割算法(/HTML)
分享到:

《智能系统学报》[ISSN:1673-4785/CN:23-1538/TP]

卷:
第2卷
期数:
2007年01期
页码:
53-58
栏目:
出版日期:
2007-02-25

文章信息/Info

Title:
Image segmentation algorithm based on the PSO and improved Snake model
文章编号:
1673-4785(2007)01-0053-06
作者:
王科俊郭庆昌
哈尔滨工程大学自动化学院,黑龙江哈尔滨150001
Author(s):
WANG Ke-jun GUO Qing-chang
College of Automation, Harbin Engineering University, Harbin 150001,China
关键词:
Snake模型图像分割PSO算法
Keywords:
Snake model image segmentation PSO algorithm
分类号:
TP391
文献标志码:
A
摘要:
基于活动轮廓(Snake)模型的目标轮廓提取是图像分割中一种重要的方法.为了克服传统Snake模型在图像分割中不能向凹处收敛和收敛不准确的缺点,提出了一种粒子群优化算法与改进的Snake模型相结合的图像分割算法.改进的Snake模型,即在传统的Snake 模型的基础上增加了一个向心能量,增加此能量可以使初始化曲线向目标的凹处收敛.又由于粒子群优化算法具有获得全局最优的能力,可以使曲线能更准确地收敛到目标的边界.通过实验证明此方法可以取得很好的分割效果.
Abstract:
Getting the contour of an object according to the Snake model is an i mportant method in the image segmentation. Because traditional Snake model cann ot reach the concave of the object and the result of convergence is not accurate , an image segmentation algorithm based on the PSO and improved Snake model is proposed. The improved Snake model is generated by adding centripetal energy t o traditional Snake model. The curve can reach the concave of the object because of the centripetal energy. Because the PSO has the ability of getting the global optimization, the curve can exactly reach the edge of the object. It is proved by experiment that preferable image segmentation result is gotten based on the a lgorithm.

参考文献/References:

[1] KASS M, WITKIN A, TERZOPULOS D. Snakes: active contour models[A]. In: Pr oceeding of the First International Conference on Computer Vision[C]. London, 1987.
[2]KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models[J]. Int′ I J Computer Vision,1988, 1(4) :321-331.
[3]TSECHPENAKIS G, RAPANTZIKOS K, TSAPATSOULIS N, KOLLIAS S. A snake model f or object tracking in natural sequences[J]. Signal Processing: Image Communica tion,2004, 19(3):219-238.
[4]PENG J, ZHANG D, LIU Y. An improved Snake model for building detection fro m urban aerial images[J]. Pattern Recognition Letters, 2005, 26(5):587-595.
[5]邱书波,王化祥,梁志伟. 一种新的BSnake算法在目标轮廓跟踪中的应用[J].中国图象图形学报,2005,10(5):585-589.
 QIU Shubo,WANG Huaxiang, LIANG Zhiwei.Tracking object contour using a novel b Snake algorithm[J].Journal of Image a nd Graphics, 2005,10(5):585-589.
[6]COHEN L D. On active contour models and balloon[A]. CVGIP, 1991, 53(2): 211-218.
[7]XU C, PRINCE P L. Snakes, shapes and gradient vector flow[J]. IEEE Trans on Image Processing,1998,1(7):359-369.
[8]陈允杰,张建伟.遗传算法在Snake模型中的应用[J].计算机应用,2004, 24 (5):80-81,84.〖LL〗CHEN Yunjie, ZHANG Jianwei. Genetic algorithms applied in snake model[J] . C omputer Applications, 2004,24(5):80-81,84.
[9]KENNEDY J, EBERHART R C. Particle swarm optimization[A]. P roceed ings of IEEE International Conference on Neural Networks[C]. Perth, l995.
[10]EBERHART R C, SHI Y. Particle swarm optimization development s, appli cation s and resources[A]. Proceedings of the Congress on Evolutionary Computation[C ].Piscataway,2001.
[11]MAURICE C, KENNEDY J. The particle swarmexplosion, stability, and conver gence in a multidimensional complex space[J]. IEEE Transactions on Evolutionar y Computation, 2002, 6(1): 58-73.

相似文献/References:

[1]陈小波,程显毅.一种基于MAS的自适应图像分割方法[J].智能系统学报,2007,2(04):80.
 CHEN Xiao-bo,CHENG Xian-yi.An adaptive image segmentation technique based on multiAgent system[J].CAAI Transactions on Intelligent Systems,2007,2(01):80.
[2]刘咏梅,代丽洁.基于空间位置约束的K均值图像分割[J].智能系统学报,2010,5(01):67.
 LIU Yong-mei,DAI Li-jie.An improved method of Kmeans image segmentation based on spatial position information[J].CAAI Transactions on Intelligent Systems,2010,5(01):67.
[3]吴一全,纪守新.灰度熵和混沌粒子群的图像多阈值选取[J].智能系统学报,2010,5(06):522.
 WU Yi-quan,JI Shou-xin.Multithreshold selection for an image based on gray entropy and chaotic particle swarm optimization[J].CAAI Transactions on Intelligent Systems,2010,5(01):522.
[4]尚倩,阮秋琦,李小利.双目立体视觉的目标识别与定位[J].智能系统学报,2011,6(04):303.
 SHANG Qian,RUAN Qiuqi,LI Xiaoli.Target recognition and location based on binocular stereo vision[J].CAAI Transactions on Intelligent Systems,2011,6(01):303.
[5]胡光龙,秦世引.动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J].智能系统学报,2012,7(01):61.
 HU Guanglong,QIN Shiyin.High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J].CAAI Transactions on Intelligent Systems,2012,7(01):61.
[6]马慧,王科俊.采用旋转校正的指静脉图像感兴趣区域提取方法[J].智能系统学报,2012,7(03):230.
 MA Hui,WANG Kejun.A region of interest extraction method using rotation rectified finger vein images[J].CAAI Transactions on Intelligent Systems,2012,7(01):230.
[7]尹雨山,王李进,尹义龙,等.回溯搜索优化算法辅助的多阈值图像分割[J].智能系统学报,2015,10(01):68.[doi:10.3969/j.issn.1673-4785.201410008]
 YIN Yushan,WANG Lijin,YIN Yilong,et al.Backtracking search optimization algorithm assisted multilevel threshold for image segmentation[J].CAAI Transactions on Intelligent Systems,2015,10(01):68.[doi:10.3969/j.issn.1673-4785.201410008]
[8]吴一全,王凯,曹鹏祥.蜂群优化的二维非对称Tsallis交叉熵图像阈值选取[J].智能系统学报,2015,10(01):103.[doi:10.3969/j.issn.1673-4785.201403040]
 WU Yiquan,WANG Kai,CAO Pengxiang.Two-dimensional asymmetric tsallis cross entropy image threshold selection using bee colony optimization[J].CAAI Transactions on Intelligent Systems,2015,10(01):103.[doi:10.3969/j.issn.1673-4785.201403040]
[9]龙鹏,鲁华祥.方差不对称先验信息引导的全局阈值分割方法[J].智能系统学报,2015,10(5):663.[doi:10.11992/tis.201412022]
 LONG Peng,LU Huaxiang.Global threshold segmentation technique guided by prior knowledge with asymmetric variance[J].CAAI Transactions on Intelligent Systems,2015,10(01):663.[doi:10.11992/tis.201412022]
[10]刘恋,常冬霞,邓勇.动态小生境人工鱼群算法的图像分割[J].智能系统学报,2015,10(5):669.[doi:10.11992/tis.201501001]
 LIU lian,CHANG Dongxia,DENG Yong.An image segmentation method based on dynamic niche artificial fish-swarm algorithm[J].CAAI Transactions on Intelligent Systems,2015,10(01):669.[doi:10.11992/tis.201501001]

备注/Memo

备注/Memo:
收稿日期:2006-07-22.
作者简介:
王科俊,男,1962年生,教授,博士生导师,主要研究方向为模式识别与智能系统.中国人工智能学会理事,参加并完成的科研项目中获得部级科技进步二等奖2项,三等奖3项,省高校科学技术一等奖1项、二等奖1项.获国家版权局软件著作权登记 1项.E-mail:wangkejun@hrbeu.edu.cn
郭庆昌,男,1979年生,硕士研究生,主要研究方向为模式识别与智能系统、图像处理.
更新日期/Last Update: 2009-05-05