[1]王德文,张林飞,苗庆健,等.多尺度路由时空注意力的综合能源多元负荷预测[J].智能系统学报,2025,20(6):1379-1391.[doi:10.11992/tis.202501003]
 WANG Dewen,ZHANG Linfei,MIAO Qingjian,et al.Integrated energy multiple load forecasting for multiscale routing spatiotemporal attention[J].CAAI Transactions on Intelligent Systems,2025,20(6):1379-1391.[doi:10.11992/tis.202501003]
点击复制

多尺度路由时空注意力的综合能源多元负荷预测

参考文献/References:
[1] 鲁斌, 霍泽健, 俞敏. 基于LSTNet-Skip的综合能源系统多元负荷超短期预测[J]. 中国电机工程学报, 2023, 43(6): 2273-2283.
LU Bin, HUO Zejian, YU Min. Multi load ultra short-term forecasting of integrated energy system based on LSTNet-skip[J]. Proceedings of the CSEE, 2023, 43(6): 2273-2283.
[2] 骆钊, 吴谕侯, 朱家祥, 等. 基于多尺度时间序列块自编码Transformer神经网络模型的风电超短期功率预测[J]. 电网技术, 2023, 47(9): 3527-3537.
LUO Zhao, WU Yuhou, ZHU Jiaxiang, et al. Wind power forecasting based on multi-scale time series block auto-encoder Transformer neural network model[J]. Power system technology, 2023, 47(9): 3527-3537.
[3] TONG Haozhuo, KONG Lingyun, LIU Jie, et al. Segmented frequency-domain correlation prediction model for long-term time series forecasting using Transformer[J]. IET software, 2024, 2024(1): 2920167.
[4] 黄冬梅, 余京朋, 崔承刚, 等. 多时间尺度深度强化学习光储配电网电压优化[J]. 中国电机工程学报, 2024, 45(17): 6709-6722.
HUANG Dongmei, YU Jingpeng, CUI Chenggang, et al. Voltage optimization for PV-ES distribution network with multi-timescale deep reinforcement learning method[J]. Proceedings of CSEE, 2024, 45(17): 6709-6722.
[5] 张帅, 刘文霞, 唐浩洋, 等. 一种基于Transformer多特征融合的短期负荷预测方法[J]. 华北电力大学学报(自然科学版), 2025, 52(3): 68-83.
ZHANG Shuai, LIU Wenxia, TANG Haoyang, et al. A short-term load forecasting method based on multi-feature fusion using Transformer[J]. Journal of North China Electric Power University(natural science edition), 2025, 52(3): 68-83.
[6] 李云松, 张智晟. 考虑综合需求响应的Transformer-图神经网络综合能源系统多元负荷短期预测[J]. 电工技术学报, 2024, 39(19): 6119-6128
LI Yunsong, ZHANG Zhisheng. Transformer based multi load short-term forecasting of integrated energy system considering integrated demand response[J]. Transactions of China electrotechnical society, 2024, 39(19): 6119-6128
[7] 张延宇, 张智铭, 刘春阳, 等. 基于动态自适应图神经网络的电动汽车充电负荷预测[J]. 电力系统自动化, 2024, 48(7): 86-93
ZHANG Yanyu, ZHANG Zhiming, LIU Chunyang, etal. Electric vehicle charging load prediction based on dynamic adaptive graph neural network[J]. Automation of electric power systems, 2024, 48(7): 86-93
[8] 林盛振. 考虑负荷特征分析的综合能源系统多能负荷短期预测研究[D]. 广州: 华南理工大学, 2022.
LIN Shengzhen. Study on short-term forecasting of multi-energy load of integrated energy system considering load characteristic analysis[D]. Guangzhou: South China University of Technology, 2022.
[9] 姜飞, 林政阳, 王文烨, 等. 考虑最小平均包络熵负荷分解的最优Bagging集成超短期多元负荷预测[J]. 中国电机工程学报, 2024, 44(5): 1777-1789.
JIANG Fei, LIN Zhengyang, WANG Wenye, et al. Optimal bagging ensemble ultra short term multi-energy load forecasting considering least average envelope entropy load decomposition[J]. Proceedings of the CSEE, 2024, 44(5): 1777-1789.
[10] 叶剑华, 曹旌, 杨理, 等. 基于变分模态分解和多模型融合的用户级综合能源系统超短期负荷预测[J]. 电网技术, 2022, 46(7): 2610-2622.
YE Jianhua, CAO Jing, YANG Li, et al. Ultra short-term load forecasting of user level integrated energy system based on variational mode decomposition and multi-model fusion[J]. Power system technology, 2022, 46(7): 2610-2622.
[11] 张玉敏, 孙猛, 吉兴全, 等. 基于模态分解与多任务学习模型的综合能源系统多元负荷短期预测[J]. 高电压技术, 2025, 51(7): 3488-3499.
ZHANG Yumin, SUN Meng, JI Xingquan, et al. Short-term load forecasting of integrated energy system based on modal decomposition and multi-task learning model[J]. High voltage engineering, 2025, 51(7): 3488-3499.
[12] LI Zhenyu, ZHANG Xikun, DONG Zhenbiao. TSF-transformer: a time series forecasting model for exhaust gas emission using transformer[J]. Applied intelligence, 2022: 1-15.
[13] 王凤随, 陈金刚, 王启胜, 等. 自适应上下文特征的多尺度目标检测算法[J]. 智能系统学报, 2022, 17(2): 276-285.
WANG Fengsui, CHEN Jingang, WANG Qisheng, et al. Multi-scale target detection algorithm based on adaptive context features[J]. CAAI transactions on intelligent systems, 2022, 17(2): 276-285.
[14] 梁李芳, 关东海, 张吉, 等. 基于时空注意力机制的多元时间序列异常检测[J]. 计算机科学, 2023, 50(S2): 450-457.
LIANG Lifang, GUAN Donghai, ZHANG Ji, et al. Anomaly detection of multivariate time series based on spatio-temporal attention mechanism[J]. Computer science, 2023, 50(S2): 450-457.
[15] 王昊, 周建涛, 郝昕毓, 等. 基于特征再抽象(FRA)的多元时序预测方法[J]. 计算机科学, 2023, 50(S2): 662-669.
WANG Hao, ZHOU Jiantao, HAO Xinyu, et al. Multivariate time series prediction method based on feature re-abstraction (FRA)[J]. Computer science, 2023, 50(S2): 662-669.
[16] SHEN Li, WEI Yuning, WANG Yangzhu. GBT: two-stage Transformer framework for non-stationary time series forecasting[J]. Neural networks, 2023, 165: 953-970.
[17] 张大海, 孙锴, 倪平浩. 基于耦合关系挖掘及渐进式分层提取多任务学习网络的风–光-荷短期预测[J]. 电网技术, 2023, 47(9): 3537-3547.
ZHANG Dahai, SUN Kai, NI Pinghao. Wind-photovoltaic-load short-term forecast based on coupling relation mining and progressive layered extraction of multi-task learning network[J]. Power system technology, 2023, 47(9): 3537-3547.
[18] 韩璐, 霍纬纲, 张永会, 等. 基于多尺度特征融合与双注意力机制的多元时间序列预测[J]. 计算机工程, 2023, 49(9): 99-108.
HAN Lu, HUO Weigang, ZHANG Yonghui, et al. Multivariate time series forecasting based on multi-scale feature fusion and dual-attention mechanism[J]. Computer engineering, 2023, 49(9): 99-108.
[19] 刁涵彬, 李培强, 吕小秀, 等. 考虑多元储能差异性的区域综合能源系统储能协同优化配置[J]. 电工技术学报, 2021, 36(1): 151-165.
DIAO Hanbin, LI Peiqiang, LYU Xiaoxiu, et al. Coordinated optimal allocation of energy storage in regional integrated energy system considering the diversity of multi-energy storage[J]. Transactions of China electrotechnical society, 2021, 36(1): 151-165.
[20] 蔡屹. 计及多能耦合关系的小样本综合能源系统多元负荷预测方法研究[D]. 吉林: 东北电力大学, 2024.
CAI Yi. Research on multi-load forecasting method of small sample comprehensive energy system considering multi-energy coupling relationship[D]. Jilin: Northeast Dianli University, 2024.
[21] 何李杰, 高茂庭. 基于交叉注意力的点击率预测模型[J]. 计算机工程与应用, 2025, 61(7): 353-360.
HE Lijie, GAO Maoting. Click through rate prediction model based on cross attention[J]. Computer engineering and applications, 2025, 61(7): 353-360.
[22] 雷博. 综合能源系统多元负荷预测的混合深度学习模型研究[D]. 太原: 太原科技大学, 2024.
LEI Bo. Study on hybrid deep learning model for multivariate load forecasting of integrated energy system[D]. Taiyuan: Taiyuan University of Science and Technology, 2024.
[23] 吴军英, 路欣, 刘宏, 等. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140
WU Junying, LU Xin, LIU Hong, etal. Ultra-short-term multi-region power load forecasting based on spearman-GCN-GRU model[J]. Electric power, 2024, 57(6): 131-140
[24] 陈明昊, 孙毅, 谢志远. 基于双层深度强化学习的园区综合能源系统多时间尺度优化管理[J]. 电工技术学报, 2023, 38(7): 1864-1881.
CHEN Minghao, SUN Yi, XIE Zhiyuan. The multi-time-scale management optimization method for park integrated energy system based on the bi-layer deep reinforcement learning[J]. Transactions of China electrotechnical society, 2023, 38(7): 1864-1881.
[25] 郭顺宁, 马雪, 杨帆, 等. 基于最优Copula相关性分析的短期风速预测方法[J]. 电网与清洁能源, 2024, 40(2): 63-72.
GUO Shunning, MA Xue, YANG Fan, et al. A short-term wind speed prediction method based on optimal Copula correlation analysis[J]. Power system and clean energy, 2024, 40(2): 63-72.
[26] 赵洪山, 吴雨晨, 潘思潮, 等. 基于TCN和高斯过程残差建模学习的净负荷概率预测方法[J]. 太阳能学报, 2024, 45(12): 588-595
ZHAO Hongshan,WU Yuchen,PAN Sichao,et al. Probabilistic net load forecasting based on TCN and GAUSSIAN process-enabled residual modeling learning approach[J]. Acta energiae solaris sinica, 2024, 45(12): 588-595
[27] 孙玉芹, 王亚文, 朱威, 等. 基于考虑气温影响的门限自回归移动平均模型居民日用电负荷预测[J]. 电力建设, 2022, 43(9): 117-124.
SUN Yuqin, WANG Yawen, ZHU Wei, et al. Residential daily power load forecasting based on threshold ARMA model considering the influence of temperature[J]. Electric power construction, 2022, 43(9): 117-124.
[28] 林静怀, 范士雄, 徐郑崎, 等. 基于模糊层次分析法和LSTM-注意力机制的电网运行态势感知评估模型[J]. 电力信息与通信技术, 2020, 18(4): 58-66.
LIN Jinghuai, FAN Shixiong, XU Zhengqi, et al. A situation awareness model for power grid operation based on fuzzy analytic hierarchy process and LSTM-attention mechanism[J]. Electric power information and communication technology, 2020, 18(4): 58-66.
[29] 吕佳炜, 张沈习, 程浩忠, 等. 考虑互联互动的区域综合能源系统规划研究综述[J]. 中国电机工程学报, 2021, 41(12): 4001-4021.
LYU Jiawei, ZHANG Shenxi, CHENG Haozhong, et al. Review on district-level integrated energy system planning considering interconnection and interaction[J]. Proceedings of the CSEE, 2021, 41(12): 4001-4021.
[30] 范航舟, 梅红岩, 赵勤, 等. 融合双注意力机制的GNN多维时间序列预测[J]. 智能系统学报, 2024, 19(5): 1277-1286.
FAN Hangzhou, MEI Hongyan, ZHAO Qin, et al. Multivariate time series forecasting with a graph neural network and dual attention mechanism[J]. CAAI transactions on intelligent systems, 2024, 19(5): 1277-1286.
[31] WANG Weina, SHAO Jiapeng, JUMAHONG H. Fuzzy inference-based LSTM for long-term time series prediction[J]. Scientific reports, 2023, 13(1): 20359.
[32] VASWANI A, SHAZEER N M, PARMAR N, et al. Attention is all you need [J]. Advances in neural information processing systems, 2017, 30.
[33] CHEN Lifang, GE Hongze, LI Jiawei. CrossFormer: multi-scale cross-attention for polyp segmentation[J]. IET image processing, 2023, 17(12): 3441-3452.
相似文献/References:
[1]陈志鹏,张勇,高海荣,等.隐私保护下融合联邦学习和LSTM的少数据综合能源多元负荷预测[J].智能系统学报,2024,19(3):565.[doi:10.11992/tis.202208049]
 CHEN Zhipeng,ZHANG Yong,GAO Hairong,et al.Integrated energy multivariate load forecasting combining federated learning with LSTM in privacy-protected and low-data environments[J].CAAI Transactions on Intelligent Systems,2024,19():565.[doi:10.11992/tis.202208049]
[2]王德文,安涵,张林飞,等.渐进式分层特征提取的综合能源多任务负荷预测[J].智能系统学报,2025,20(4):858.[doi:10.11992/tis.202406008]
 WANG Dewen,AN Han,ZHANG Linfei,et al.Multi-task load forecasting of integrated energy based on progressive layered feature extraction[J].CAAI Transactions on Intelligent Systems,2025,20():858.[doi:10.11992/tis.202406008]

备注/Memo

收稿日期:2025-1-6。
基金项目:国家自然科学基金项目(62371188).
作者简介:王德文,副教授,主要研究方向为时间序列预测。主持或参与国家自然科学基金项目4项;获省科技进步奖3项;以第一完成人获得国家专利授权3项;发表学术论文50余篇。E-mail:wde@ncepu.edu.cn。;张林飞,硕士研究生,主要研究方向为负荷预测。E-mail:1657386138@qq.com。;苗庆健,硕士研究生,主要研究方向为综合能源系统负荷预测与光伏预测。E-mail:mqjncepu@163.com。
通讯作者:王德文. E-mail:wdewen@gmail.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com