[1]李沁,陈飞扬,彭晗,等.视觉感知人景互影响的人体动作预测方法[J].智能系统学报,2025,20(4):1010-1023.[doi:10.11992/tis.202411016]
LI Qin,CHEN Feiyang,PENG Han,et al.Human motion prediction method with visual perception of human-scene mutual influence[J].CAAI Transactions on Intelligent Systems,2025,20(4):1010-1023.[doi:10.11992/tis.202411016]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第4期
页码:
1010-1023
栏目:
学术论文—机器学习
出版日期:
2025-08-05
- Title:
-
Human motion prediction method with visual perception of human-scene mutual influence
- 作者:
-
李沁1,2, 陈飞扬1, 彭晗1, 王勇3, 刘利枚1, 张伟4
-
1. 湖南工商大学 人工智能与先进计算学院, 湖南 长沙 410205;
2. 湘江实验室, 湖南 长沙 410205;
3. 中南大学 自动化学院, 湖南 长沙 410083;
4. 字节跳动, 广东 深圳 518063
- Author(s):
-
LI Qin1,2, CHEN Feiyang1, PENG Han1, WANG Yong3, LIU Limei1, ZHANG Wei4
-
1. School of Artificial Intelligence and Advanced Computing, Hunan Technology and Business University, Changsha 410205, China;
2. Xiangjiang Laboratory, Changsha 410205, China;
3. School of Automation, Central South University, Changsha 410083, China;
4. ByteDance, Shenzhen 518063, China
-
- 关键词:
-
人体动作预测; 场景信息; 视觉感知; 动作特征; 场景特征; 人景互影响; 场景适应性; 噪声逆扩散
- Keywords:
-
human motion prediction; scene information; visual perception; motion features; scene features; human-scene mutual influence; scene adaptability; noise inverse diffusion
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202411016
- 文献标志码:
-
2025-2-26
- 摘要:
-
场景信息驱动人类调整动作轨迹,对人体动作预测影响较大。当前研究仅捕获场景信息更新动作特征,忽略了场景与动作的互影响关系。为此,提出一种视觉感知人景互影响的人体动作预测方法。提取动作特征和场景特征,然后循环执行场景信息捕获单元和场景适应度增强单元。前者捕获影响动作的场景信息,后者利用该信息更新动作特征以增强场景适应性。完成循环后,得到场景适应型动作特征。基于该特征执行噪声逆扩散完成动作预测。在3个数据集上进行实验,结果表明本文方法的预测误差低于当前主流方法,验证了其有效性。本文方法将为真实场景中的人体动作预测提供更加可靠的解决方案。
- Abstract:
-
Scene information drives humans to adjust motion trajectories and greatly influences human motion prediction. Current research only updates motion features with scene information and ignores their mutual influences. Hence, a human motion prediction method with visual perception of human-scene mutual influence is proposed in this paper. Motion and scene features are extracted, and scene information capture and adaptability enhancement are iteratively executed. The former captures scene information affecting human motions, whereas the latter updates motion features with the information to enhance their scene adaptability. After the iteration, the scene-adaptive action features are obtained. Noise inverse diffusion is performed based on the features to complete motion prediction. Experiments conducted on three datasets demonstrate that the proposed method has lower prediction error than the current methods, which verifies its effectiveness. The proposed method provides a more reliable solution for human motion prediction in real scenes.
备注/Memo
收稿日期:2024-11-15。
基金项目:国家自然科学基金项目(62202161);湖南省教育厅科学研究项目(20A125, 22A0460, 23B0597, 24B0584);湘江实验室重大项目(23XJ01007,23XJ01009);湖南省自然科学基金项目(2025JJ60384).
作者简介:李沁,讲师,博士,主要研究方向为人机交互和模式识别。E-mail:qinli@hutb.edu.cn。;陈飞扬,主要研究方向为计算机视觉和人机交互。E-mail:1689343195@qq.com。;刘利枚,教授,博士,主要研究方向为人工智能和智能决策。主持国家重点研发计划、国家社会科学基金等省部级以上项目10余项。发表学术论文30余篇,出版专著和教材3部。E-mail:seagullm@163.com。
通讯作者:刘利枚. E-mail:seagullm@163.com
更新日期/Last Update:
1900-01-01