[1]李沁,陈飞扬,彭晗,等.视觉感知人景互影响的人体动作预测方法[J].智能系统学报,2025,20(4):1010-1023.[doi:10.11992/tis.202411016]
 LI Qin,CHEN Feiyang,PENG Han,et al.Human motion prediction method with visual perception of human-scene mutual influence[J].CAAI Transactions on Intelligent Systems,2025,20(4):1010-1023.[doi:10.11992/tis.202411016]
点击复制

视觉感知人景互影响的人体动作预测方法

参考文献/References:
[1] RENZ H, KR?MER M, BERTRAM T. Comparing human motion forecasts in moving horizon trajectory planning of collaborative robots[C]//2023 IEEE International Conference on Robotics and Biomimetics. Koh Samui: IEEE, 2023: 1-6.
[2] LEE M L, LIU Wansong, BEHDAD S, et al. Robot-assisted disassembly sequence planning with real-time human motion prediction[J]. IEEE transactions on systems, man, and cybernetics: systems, 2023, 53(1): 438-450.
[3] ZHOU Xiaokang, LIANG Wei, WANG K I, et al. Deep-learning-enhanced human activity recognition for Internet of healthcare things[J]. IEEE internet of things journal, 2020, 7(7): 6429-6438.
[4] LI Qin, WANG Yong. Self-supervised pretraining based on noise-free motion reconstruction and semantic-aware contrastive learning for human motion prediction[J]. IEEE transactions on emerging topics in computational intelligence, 2024, 8(1): 738-751.
[5] URTASUN R, FLEET D J, LAWRENCE N D. Modeling human locomotion with topologically constrained latent variable models[C]//Workshop on Human Motion. Berlin: Springer Berlin Heidelberg, 2007: 104-118.
[6] LEHRMANN A M, GEHLER P V, NOWOZIN S. Efficient nonlinear markov models for human motion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 1314-1321.
[7] MARTINEZ J, BLACK M J, ROMERO J. On human motion prediction using recurrent neural networks[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu: IEEE, 2017: 2891-2900.
[8] WOLTER M, YAO A. Complex gated recurrent neural networks[C]//32nd Conference on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018: 1-11.
[9] 桑海峰, 陈紫珍, 何大阔. 基于双向GRU和注意力机制模型的人体动作预测[J]. 计算机辅助设计与图形学学报, 2019, 31(7): 1166-1174.
SANG Haifeng, CHEN Zizhen, HE Dakuo. Human motion prediction based on bidirectional-GRU and attention mechanism model[J]. Journal of computer-aided design & computer graphics, 2019, 31(7): 1166-1174.
[10] 王辉, 丁铂栩, 宋佳豪, 等. 基于PointNet和长短时记忆网络的三维人体动作预测[J]. 计算机应用, 2022, 42(S2): 60-66.
WANG Hui, DING Boxu, SONG Jiahao, et al. 3D human action prediction via PointNet and long short-term memory network[J]. Journal of computer applications, 2022, 42(S2): 60-66.
[11] WANG Hongsong, DONG Jian, CHENG Bin, et al. PVRED: a position-velocity recurrent encoder-decoder for human motion prediction[J]. IEEE transactions on image processing, 2021, 30: 6096-6106.
[12] GUO Wen, DU Yuming, SHEN Xi, et al. Back to MLP: a simple baseline for human motion prediction[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2023: 4809-4819.
[13] 张瑞鹏. 基于门控循环单元网络的人体动作预测方法研究[D]. 南京: 南京理工大学, 2021.
ZHANG Ruipeng. Research on human motion prediction method based on gated recurrent unit network[D]. Nanjing: Nanjing University of Science and Technology, 2021.
[14] LIU Xiaoli, YIN Jianqin, LIU Jin, et al. TrajectoryCNN: a new spatio-temporal feature learning network for human motion prediction[J]. IEEE transactions on circuits and systems for video technology, 2021, 31(6): 2133-2146.
[15] TANG Jin, ZHANG Jin, YIN Jianqin. Temporal consistency two-stream CNN for human motion prediction[J]. Neurocomputing, 2022, 468: 245-256.
[16] 张晋, 唐进, 尹建芹. 面向人体动作预测的对称残差网络[J]. 机器人, 2022, 44(3): 291-298.
ZHANG Jin, TANG Jin, YIN Jianqin. Symmetric residual network for human motion prediction[J]. Robot, 2022, 44(3): 291-298.
[17] 贺朵. 基于图卷积网络深度学习的人体动作识别与预测[D]. 西安: 西安理工大学, 2023.
HE Duo. Human action recognition and prediction based on deep learning of graph convolutional networks [D]. Xi’an: Xi’an University of Technology, 2023.
[18] MAO Wei, LIU Miaomiao, SALZMANN M, et al. Learning trajectory dependencies for human motion prediction[C]//Proceedings of the lEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9488-9496.
[19] LI Qin, WANG Yong, LYU Fanbing. Semantic correlation attention-based multiorder multiscale feature fusion network for human motion prediction[J]. IEEE transactions on cybernetics, 2024, 54(2): 825-838.
[20] WANG Xinshun, CUI Qiongjie, CHEN Chen, et al. GCNext: towards the unity of graph convolutions for human motion prediction[J]. Proceedings of the AAAI conference on artificial intelligence. 2024, 38(6): 5642-5650.
[21] 李沁. 基于三维骨架数据的人体动作预测及其应用研究[D]. 长沙: 中南大学, 2022.
LI Qin. Human motion prediction based on 3D skeleton data and its application[D]. Changsha: Central South University, 2022
[22] 代金利, 曹江涛, 姬晓飞. 交互关系超图卷积模型的双人交互行为识别[J]. 智能系统学报, 2024, 19(2): 316-324.
DAI Jinli, CAO Jiangtao, JI Xiaofei. Two-person interaction recognition based on the interactive relationship hypergraph convolution network model[J]. CAAI transactions on intelligent systems, 2024, 19(2): 316-324.
[23] 胡佳慧. 基于时空特征融合与动作序列补全的人体动作预测算法研究[D]. 长春: 吉林大学, 2024.
HU Jiahui. Research on human motion prediction algorithms based on spatiotemporal features fusion and motion sequence completion[D]. Changchun: Jilin University, 2024.
[24] BERMAN M G, JONIDES J, KAPLAN S. The cognitive benefits of interacting with nature[J]. Psychological science, 2008, 19(12): 1207-1212.
[25] CORONA E, PUMAROLA A, ALENYA G, et al. Context-aware human motion prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seattle: IEEE, 2020: 6992-7001.
[26] HASSAN M, CEYLAN D, VILLEGAS R, et al. Stochastic scene-aware motion prediction[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 11374-11384.
[27] CAO Zhe, GAO Hang, MANGALAM K, et al. Long-term human motion prediction with scene context[C]//European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 387-404.
[28] MAO Wei, HARTLEY R I, SALZMANN M. Contact-aware human motion forecasting[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022: 7356-7367.
[29] SCOFANO L, SAMPIERI A, SCHIELE E, et al. Staged contact-aware global human motion forecasting[C]//The 34th British Machine Vision Conference. Aberdeen: BMVA Press, 2023: 589-594.
[30] XING Chaoyue, MAO Wei, LIU Miaomiao. Scene-aware human motion forecasting via mutual distance prediction[C]//Computer Vision–ECCV 2024. Cham: Springer, 2023: 128–144.
[31] GAO Xuehao, YANG Yang, WU Yang, et al. Multi-condition latent diffusion network for scene-aware neural human motion prediction[J]. IEEE transactions on image processing, 2024, 33: 3907-3920.
[32] LIU Zhenguang, LYU Kedi, WU Shuang, et al. Aggregated multi-GANs for controlled 3D human motion prediction[J]. Proceedings of the AAAI conference on artificial intelligence. 2021, 35(3): 2225–2232.
[33] ZHAO Mengyi, TANG Hao, XIE Pan, et al. Bidirectional Transformer GAN for long-term human motion prediction[J]. ACM transactions on multimedia computing, communications, and applications, 2023, 19(5): 1-19.
[34] BARQUERO G, ESCALERA S, PALMERO C. BeLFusion: latent diffusion for behavior-driven human motion prediction[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 2317-2327.
[35] TIAN Sibo, ZHENG Minghui, LIANG Xiao. TransFusion: a practical and effective transformer-based diffusion model for 3D human motion prediction[J]. IEEE robotics and automation letters, 2024, 9(7): 6232-6239.
[36] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11534–11542.
[37] HASSAN M, CHOUTAS V, TZIONAS D, et al. Resolving 3D human pose ambiguities with 3D scene constraints[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 2282–2292.
[38] BHATNAGAR B L, XIE Xianghui, PETROV I A, et al. BEHAVE: dataset and method for tracking human object interactions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 15914-15925.
[39] YAN Sijie, XIONG Yuanjun, LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 7444–7452.
[40] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[C]//International Conference on Learning Representations. NewOrleans: ICLR, 2021: 1-22.
[41] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
[42] SUN Quan, FANG Yuxin, WU L, et al. EVA-CLIP: improved training techniques for CLIP at scale[EB/OL]. (2023-03-27)[2024-11-15]. https://arxiv.org/abs/2303.15389.
[43] NARGUND A A, SRA M. SPOTR: spatio-temporal pose Transformers for human motion prediction[EB/OL]. (2023–03–11)[2024–11–15]. https://arxiv.org/abs/2303.06277.
相似文献/References:
[1]田国会,吉艳青,李晓磊.家庭智能空间下基于场景的人的行为理解[J].智能系统学报,2010,5(1):57.
 TIAN Guo-hui,JI Yan-qing,LI Xiao-lei.Human behaviors understanding based on scene knowledge in home intelligent space[J].CAAI Transactions on Intelligent Systems,2010,5():57.

备注/Memo

收稿日期:2024-11-15。
基金项目:国家自然科学基金项目(62202161);湖南省教育厅科学研究项目(20A125, 22A0460, 23B0597, 24B0584);湘江实验室重大项目(23XJ01007,23XJ01009);湖南省自然科学基金项目(2025JJ60384).
作者简介:李沁,讲师,博士,主要研究方向为人机交互和模式识别。E-mail:qinli@hutb.edu.cn。;陈飞扬,主要研究方向为计算机视觉和人机交互。E-mail:1689343195@qq.com。;刘利枚,教授,博士,主要研究方向为人工智能和智能决策。主持国家重点研发计划、国家社会科学基金等省部级以上项目10余项。发表学术论文30余篇,出版专著和教材3部。E-mail:seagullm@163.com。
通讯作者:刘利枚. E-mail:seagullm@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com