[1]郑帅,彭奏章,朱振峰,等.多双曲空间传递图解耦表示学习[J].智能系统学报,2025,20(5):1243-1255.[doi:10.11992/tis.202409034]
 ZHENG Shuai,PENG Zouzhang,ZHU Zhenfeng,et al.Graph disentanglement representation learning based on propagation in multiple hyperbolic spaces[J].CAAI Transactions on Intelligent Systems,2025,20(5):1243-1255.[doi:10.11992/tis.202409034]
点击复制

多双曲空间传递图解耦表示学习

参考文献/References:
[1] 侯磊, 刘金环, 于旭, 等. 图神经网络研究综述[J]. 计算机科学, 2024, 51(6): 282-298.
HOU Lei, LIU Jinhuan, YU Xu, et al. Review of graph neural networks[J]. Computer science, 2024, 51(6): 282-298.
[2] 白雪. 基于图神经网络的推荐方法研究[D]. 太原: 山西大学, 2023: 1-46.
BAI Xue. Research on recommendation method based on graph neural network[D]. Taiyuan: Shanxi University, 2023: 1-46.
[3] 张舒菡. 基于图表示学习的中医处方推荐方法研究[D]. 北京: 北京交通大学, 2023: 1-64.
ZHANG Shuhan. Study on TCM prescription recommendation method based on graph representation learning[D]. Beijing: Beijing Jiaotong University, 2023: 1-64.
[4] 张嘉伟. 基于图结构学习的图神经网络的药物靶标预测应用[D]. 武汉: 华中农业大学, 2023: 1-58.
ZHANG Jiawei. Application of graph neural network based on graph structure learning to drug target prediction[D]. Wuhan: Huazhong Agricultural University, 2023: 1-58.
[5] 张宇轩. 基于异构图表示学习的药物—靶蛋白关联关系预测研究[D]. 长春: 东北师范大学, 2023: 1-51.
ZHANG Yuxuan. Drug-target interaction prediction via heterogeneous graph representation learning[D]. Changchun: Northeast Normal University, 2023: 1-51.
[6] 邹然, 柳杨, 李聪, 等. 图表示学习综述[J]. 北京师范大学学报(自然科学版), 2023, 59(5): 716-724.
ZOU Ran, LIU Yang, LI Cong, et al. Graph representation learning: a review[J]. Journal of Beijing Normal University (natural science), 2023, 59(5): 716-724.
[7] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[EB/OL]. (2017-06-12)[2024-09-26]. https://arxiv.org/abs/1704.01212v2.
[8] LIN Guangfeng, KANG Xiaobing, LIAO Kaiyang, et al. Deep graph learning for semi-supervised classification[J]. Pattern recognition, 2021, 118: 108039.
[9] WU F, SOUZA A, ZHANG Tianyi, et al. Simplifying graph convolutional networks[C]//International Conference on Machine Learning. Los Angeles: PMLR, 2019: 6861–6871.
[10] MA Jianxin, CUI Peng, KUANG Kun, et al. Disentangled graph convolutional networks[C]//International Conference on Machine Learning. Los Angeles: PMLR, 2019: 4212-4221.
[11] YANG Yiding, FENG Zunlei, SONG Mingli, et al. Factorizable graph convolutional networks[J]. Advances in neural information processing systems, 2020, 33: 20286-20296.
[12] CHAMI I, YING R, Ré C, et al. Hyperbolic graph convolutional neural networks[J]. Advances in neural information processing systems, 2019, 32: 4869-4880.
[13] LIU Qi, NICKEL M, KIELA D. Hyperbolic graph neural networks[J]. Advances in neural information processing systems, 2019, 32: 8230-8241.
[14] ZHANG Yiding, WANG Xiao, SHI Chuan, et al. Hyperbolic graph attention network[J]. IEEE transactions on big data, 2022, 8(6): 1690-1701.
[15] 刘笑梅. 双曲空间中的神经网络图表示学习[D]. 桂林: 广西师范大学, 2019: 1-46.
LIU Xiaomei. Graph representation learning with neural network in hyperbolic space[D]. Guilin: Guangxi Normal University, 2019: 1-46.
[16] 周志霞. 基于自编码器与双曲几何的网络表示学习[D]. 石家庄: 河北师范大学, 2023: 1-53.
ZHOU Zhixia. Network representation learning based on auto-encoder and hyperbolic geometry[D]. Shijiazhuang: Hebei Normal University, 2023: 1-53.
[17] XU Keyulu, HU Weihua, LESKOVEC J, et al. How powerful are graph neural networks?[C]//International Conference on Learning Representations. New Orleans: OpenReview.net, 2019: 1-17.
[18] PAGE L, BRIN S, MOTWANI R, et al. The pagerank citation ranking: bring order to the web [C]//International Conference on World Wide Web. Brisbane: Elsevier, 1998: 1-17.
[19] SPINELLI I, SCARDAPANE S, UNCINI A. Adaptive propagation graph convolutional network[J]. IEEE transactions on neural networks and learning systems, 2020, 32(10): 4755-4760.
[20] GASTEIGER J, BOJCHEVSKI A, GüNNEMANN S. Predict then propagate: graph neural networks meet personalized pagerank[C]//International Conference on Learning Representations. New Orleans: OpenReview. net, 2019: 1-15.
[21] KIPF T, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22)[2024-05-09]. https://arxiv.org/abs/1609.02907.
[22] LI Guohao, MüLLER M, GHANEM B, et al. Training graph neural networks with 1000 layers[C]//International Conference on Machine Learning. [S. l. ]: PMLR, 2021: 6437–6449.
[23] SARA S, NICHOLAS F, GEOFFREY H. Dynamic routing between capsules[J]. Advances in neural information processing systems, 2017, 30: 3859-3869.
[24] ZHAO Tianxiang, ZHANG Xiang, WANG Suhang. Exploring edge disentanglement for node classification[C]//Proceedings of the ACM Web Conference 2022. Lyon: ACM, 2022: 1028-1036.
[25] LIU Yanbei, WANG Xiao, WU Shu, et al. Independence promoted graph disentangled networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 4916-4923.
[26] ZHENG Shuai, ZHU Zhenfeng, LIU Zhizhe, et al. Adversarial graph disentanglement with component-specific aggregation[J]. IEEE transactions on artificial intelligence, 2024, 5(5): 2204-2216.
[27] WANG Yifan, TANG Suyao, LEI Yuntong, et al. DisenHAN: disentangled heterogeneous graph attention network for recommendation[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. [S. l. ]: ACM, 2020: 1605-1614.
[28] XIAO Teng, CHEN Zhengyu, GUO Zhimeng, et al. Decoupled self-supervised learning for graphs[J]. Advances in neural information processing systems, 2022, 35: 620-634.
[29] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL]. (2018-02-04) [2024-05-09]. https://arxiv.org/abs/1710.10903.
[30] SUN Jianing, CHENG Zhaoyue, ZUBERI S, et al. HGCF: hyperbolic graph convolution networks for collaborative filtering[C]//Proceedings of the Web Conference 2021. Ljubljana: ACM, 2021: 593-601.
[31] 张依丁. 基于双曲空间的图表示学习算法研究[D]. 北京: 北京邮电大学, 2022: 1-98.
ZHANG Yiding. Research on hyperbolic graph representation learning algorithm graph representation learning algorithm based on hyperbolic space[D]. Beijing: Beijing University of Posts and Telecommunications, 2022: 1-98.
[32] GREGOR B, GARY B, OCTAVIAN G. Constant curvature graph convolutional networks[C]//International Conference on Machine Learning. [S. l. ]: PMLR, 2020: 486-496.
[33] ZHU Shichao, PAN Shirui, ZHOU Chuan, et al. Graph geometry interaction learning[J]. Advances in neural information processing systems, 2020, 33: 7548-7558.
[34] ZHOU Zhiheng, WANG Tao, HOU Linfang, et al. Decoupled hyperbolic graph attention network for modeling substitutable and complementary item relationships[C]//Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Atlanta: ACM, 2022: 2763–2772.
[35] LIU Meng, GAO Hongyang, JI Shuiwang. Towards deeper graph neural networks[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. [S. l. ]: ACM, 2020: 338-348.
[36] QIAN Huang, HORACE H, ABHAY S, et al. Combining label propagation and simple models out-performs graph neural networks[C]//International Conference on Learning Representations. [S. l. ]: OpenReview.net, 2021: 1-21.
[37] DONG Hande, CHEN Jiawei, FENG Fuli, et al. On the equivalence of decoupled graph convolution network and label propagation[C]//Proceedings of the Web Conference 2021. Ljubljana: ACM, 2021: 3651-3662.
[38] DING Kaize, WANG Jianling, CAVERLEE J, et al. Meta propagation networks for graph few-shot semi-supervised learning[C]//AAAI Conference on Artificial Intelligence, 2022 , 36(6): 6524-6531.
[39] 王振胜. 基于特征平滑的图神经网络在节点分类中的应用研究[D]. 北京: 北京化工大学, 2023: 9-41.
WANG Zhensheng. Research on the application of graph neural networks with feature smoothing in node classification[D]. Beijing: Beijing University of Chemical Technology, 2023: 9-41.
[40] SHEN Qinghua, REN Weijieying, QIN Wei. Graph relation aware continual learning [EB/OL]. (2023-08-16) [2024-05-09]. https://arxiv.org/abs/2308.08259.
[41] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[J]. Advances in neural information processing systems, 2017, 30: 1-11.
[42] YANG Ling, TIAN Ye, XU Minkai, et al. VQGraph: rethinking graph representation space for bridging GNNs and MLPs[C]//International Conference on Learning Representations. Vienna: OpenReview.net, 2024: 1-20.
[43] XIAO Teng, ZHU Huaisheng, CHEN Zhengyu, et al. Simple and asymmetric graph contrastive learning without augmentations[J]. Advances in neural information processing systems, 2024, 36: 1-24.
[44] CHIEN E, PENG Jianhao, LI Pan, et al. Adaptive universal generalized PageRank graph neural network[C]//International Conference on Learning Representations. [S. l. ]: OpenReview.net, 2021: 1-24.
[45] YU Tao, DE SA C. Random Laplacian features for learning with hyperbolic space[C]//International Conference on Learning Representations. Kigali: OpenReview.net, 2023: 1-23.
[46] ZHU Jiong, YAN Yujun, ZHAO Lingxiao, et al. Beyond homophily in graph neural networks: current limitations and effective designs[J]. Advances in neural information processing systems, 2020, 33: 7793-7804.
[47] WANG Xiyuan, ZHANG Muhan. How powerful are spectral graph neural networks[C]//International Conference on Machine Learning. Baltimore: PMLR, 2022: 23341-23362.
[48] PEI Hongbin, WEI Bingzhen, CHANG K, et al. Geom-GCN: geometric graph convolutional networks [C]//International Conference on Learning Representations. [S. l. ]: OpenReview.net, 2020: 1-12.
相似文献/References:
[1]孟祥福,温晶,李子函,等.多重注意力指导下的异构图嵌入方法[J].智能系统学报,2023,18(4):688.[doi:10.11992/tis.202204006]
 MENG Xiangfu,WEN Jing,LI Zihan,et al.Heterogeneous graph embedding method guided by the multi-attention mechanism[J].CAAI Transactions on Intelligent Systems,2023,18():688.[doi:10.11992/tis.202204006]
[2]肖添龙,徐计,王国胤.基于偏序关系的多视图多粒度图表示学习框架[J].智能系统学报,2025,20(1):243.[doi:10.11992/tis.202406010]
 XIAO Tianlong,XU Ji,WANG Guoyin.A multi-view and multi-granularity graph representation learning framework based on partial order relations[J].CAAI Transactions on Intelligent Systems,2025,20():243.[doi:10.11992/tis.202406010]

备注/Memo

收稿日期:2024-9-26。
基金项目:中央高校基本科研业务费项目(2024XKRC088); 国家自然科学基金项目(62476022); 北京市自然科学基金青年科学基金项目(4254085).
作者简介:郑帅,高聘副教授,博士。主要研究方向为图表示学习、图神经网络和多模态表示学习。发表学术论文20余篇。E-mail:shuaizheng@bjtu.edu.cn。;彭奏章,硕士,主要研究方向为图分析与解耦图表示学习。E-mail:pengzouzhang@bjtu.edu.cn。;朱振峰,教授,博士生导师,主要研究方向为机器学习、计算机视觉和动态数据挖掘。主持科技创新2030—“新一代人工智能”重大项目、国家自然科学基金项目、北京市自然科学基金项目等。获第十三届吴文俊人工智能科学技术科技进步二等奖 (排名第1)。E-mail:zhfzhu@bjtu.edu.cn。
通讯作者:朱振峰. E-mail:zhfzhu@bjtu.edu.cn

更新日期/Last Update: 2025-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com