[1]许晓丽,郭旭东,郑文栋,等.基于电容层析成像传感器的非接触材质识别研究[J].智能系统学报,2025,20(5):1232-1242.[doi:10.11992/tis.202408021]
XU Xiaoli,GUO Xudong,ZHENG Wendong,et al.Electrical capacitance tomography sensor for contactless material recognition[J].CAAI Transactions on Intelligent Systems,2025,20(5):1232-1242.[doi:10.11992/tis.202408021]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第5期
页码:
1232-1242
栏目:
吴文俊人工智能科学技术奖论坛
出版日期:
2025-09-05
- Title:
-
Electrical capacitance tomography sensor for contactless material recognition
- 作者:
-
许晓丽1, 郭旭东1, 郑文栋2, 刘华平3
-
1. 上海理工大学 健康科学与工程学院, 上海 200082;
2. 天津理工大学 电气工程与自动化学院, 天津 300384;
3. 清华大学 计算机科学与技术系, 北京 100084
- Author(s):
-
XU Xiaoli1, GUO Xudong1, ZHENG Wendong2, LIU Huaping3
-
1. School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200082, China;
2. School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China;
3. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
-
- 关键词:
-
电容层析成像; 平面电容传感器; 传感器建模; 非接触识别; 材质识别; 分类算法; LightGBM; 贝叶斯优化
- Keywords:
-
electrical capacitance tomography; planar capacitance sensor; sensor modeling; untouched recognition; material recognition; classification algorithm; LightGBM; Bayesian optimization
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.202408021
- 摘要:
-
电容层析成像技术(electrical capacitance tomography, ECT)凭借其快速、非侵入性的特性,有效规避了光学成像技术在识别材料特性时面临的光线干扰难题。然而,传统的ECT传感器的研究主要集中在逆问题上,很少有研究考虑通过物体介电分布实现无损的非接触识别。因此,本文设计了一款平面ECT传感器,用于非接触条件下的材质识别。使用基于贝叶斯的轻量级梯度提升机 (Bayesian-light gradient boosting machine, Bayesian-LightGBM)构建了材质预测模型,利用贝叶斯优化算法显著提升了模型的预测性能。实验结果显示在接触时准确率高达95.83%;在距离传感器20 mm以内的非接触条件下准确率达到85.28%。这意味着机器人能够以非接触、无损的方式精准获取环境中的材质信息,为机器人技术在复杂环境中的应用开辟了新的可能性。
- Abstract:
-
Electrical capacitance tomography (ECT), known for its rapid and nonintrusive characteristics, effectively avoids the optical interference problem commonly encountered in material property identification based on optical imaging technologies. However, conventional ECT sensor research has predominantly focused on solving the inverse problem, with limited emphasis on achieving noncontact, nonintrusive material identification through permittivity distribution analysis. To address this gap, this study introduces a planar ECT sensor designed for noncontact material recognition. A material prediction model based on Bayesian-LightGBM is developed, significantly enhancing the predictive performance through Bayesian optimization algorithms. Experimental results demonstrate a high accuracy rate of 95.83% when in contact and 85.28% accuracy within a noncontact range of 20 mm from the sensor. This indicates that robots can precisely acquire material information in the environment in a noncontact and nonintrusive manner, paving the way for new possibilities in the application of robotics technology in complex environments.
备注/Memo
收稿日期:2024-8-29。
基金项目:国家自然科学基金国际合作重点项目(62120106005).
作者简介:许晓丽,硕士研究生,主要研究方向为电容传感器、机器人触觉感知。E-mail:suger-xu@hotmail.com。;郭旭东,教授,中国自动化学会智能自动化专业委员会委员,主要研究方向为嵌入式系统设计、智能传感器和智能诊断系统图像处理算法。E-mail:guoxd@usst.edu.cn。;刘华平,教授,中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会秘书长,吴文俊人工智能科学技术奖获得者。主要研究方向为机器人感知、学习与控制和多模态信息融合。主持国家自然科学基金重点项目2项,发表学术论文100 余篇。E-mail:hpliu@tsinghua.edu.cn。
通讯作者:刘华平. E-mail:hpliu@tsinghua.edu.cn
更新日期/Last Update:
2025-09-05