[1]许晓丽,郭旭东,郑文栋,等.基于电容层析成像传感器的非接触材质识别研究[J].智能系统学报,2025,20(5):1232-1242.[doi:10.11992/tis.202408021]
 XU Xiaoli,GUO Xudong,ZHENG Wendong,et al.Electrical capacitance tomography sensor for contactless material recognition[J].CAAI Transactions on Intelligent Systems,2025,20(5):1232-1242.[doi:10.11992/tis.202408021]
点击复制

基于电容层析成像传感器的非接触材质识别研究

参考文献/References:
[1] KIM K, CHO J, PYO J, et al. Dynamic object recognition using precise location detection and ANN for robot manipulator[C]//2017 International Conference on Control, Artificial Intelligence, Robotics & Optimization. Prague: IEEE, 2017: 237-241.
[2] CH H S, PREETI N, MARRI S P, et al. Real-time object detection using mobile robot captured images: a deep learning approach[C]//2024 3rd International Conference for Innovation in Technology. Bangalore: IEEE, 2024: 1-6.
[3] FENG Lin, LIU Yang, LI Zan, et al. Discriminative bit selection hashing in RGB-D based object recognition for robot vision[J]. Assembly automation, 2019, 39(1): 17-25.
[4] ZHANG Shixin, SHAN Jianhua, SUN Fuchun, et al. Multimode fusion perception for transparent glass recognition[J]. Industrial Robot: the international journal of robotics research and application, 2022, 49(4): 625-633.
[5] 王业飞, 葛泉波, 刘华平, 等. 机器人视觉听觉融合的感知操作系统[J]. 智能系统学报, 2023, 18(2): 381-389.
WANG Yefei, GE Quanbo, LIU Huaping, et al. A perceptual manipulation system for audio-visual fusion of robots[J]. CAAI transactions on intelligent systems, 2023, 18(2): 381-389.
[6] 李彤, 阎宇航, 安静, 等. 基于触觉阵列感知的机器人稳定抓取判别方法[J]. 华中科技大学学报(自然科学版), 2024, 52(5): 136-143.
LI Tong, YAN Yuhang, AN Jing, et al. Discrimination method for robot stable grasping based on tactile array perception[J]. Journal of Huazhong university of science and technology (natural science edition), 2024, 52(5): 136-143.
[7] PARK K, YUK H, YANG M, et al. A biomimetic elastomeric robot skin using electrical impedance and acoustic tomography for tactile sensing[J]. Science robotics, 2022, 7(67): eabm7187.
[8] GUO Hongchen, TAN Yu jun, CHEN Ge, et al. Artificially innervated self-healing foams as synthetic piezo-impedance sensor skins[J]. Nature communications, 2020, 11(1): 5747.
[9] DUAN Xi, TAURAND S, SOLEIMANI M. Artificial skin through super-sensing method and electrical impedance data from conductive fabric with aid of deep learning[J]. Scientific reports, 2019, 9(1): 8831.
[10] LIN Z H, SMITH S. A natural user interface for realistic tactile perception of object surface texture[C]//2017 9th International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou: IEEE, 2017: 370-373.
[11] KOZYR P, SAVELIEV A, KUZNETSOV L. Determining distance to an object and type of its material based on data of capacitive sensor signal and machine learning techniques[C]//2021 International Siberian Conference on Control and Communications. Kazan: IEEE, 2021: 1-5.
[12] ZHENG Enhao, MAI Jingeng, LIU Yuxiang, et al. Forearm motion recognition with noncontact capacitive sensing[J]. Frontiers in neurorobotics, 2018, 12: 47.
[13] ZHAO Jianwei, FANG Jianhua, WANG Shouzhong, et al. Obstacle avoidance of multi-sensor intelligent robot based on road sign detection[J]. Sensors, 2021, 21(20): 6777.
[14] GOMES D F, LIN Zhonglin, LUO Shan. GelTip: a finger-shaped optical tactile sensor for robotic manipulation[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. Las Vegas: IEEE, 2020: 9903-9909.
[15] ABABEI C, RICHIE J E. Sensor design for inductive proximity and moving direction sensing of metal targets[C]//2021 10th International Conference on Modern Circuits and Systems Technologies. Thessaloniki: IEEE, 2021: 1-4.
[16] ZHANG Bo, XIANG Zemin, ZHU Siwei, et al. Dual functional transparent film for proximity and pressure sensing[J]. Nano research, 2014, 7(10): 1488-1496.
[17] WARSITO W, FAN L S. Dynamics of spiral bubble plume motion in the entrance region of bubble columns and three-phase fluidized beds using 3D ECT[J]. Chemical engineering science, 2005, 60(22): 6073-6084.
[18] OSPINA ACERO D, CHOWDHURY S M, MARASHDEH Q M, et al. Efficient and flexible sensitivity matrix computation for adaptive electrical capacitance volume tomography[J]. IEEE transactions on instrumentation and measurement, 2020, 70: 4502510.
[19] YOUNGQUIST R C, STOREY J M, NURGE M A, et al. A derivation of the electrical capacitance tomography sensitivity matrix[J]. Measurement science and technology, 2023, 34(2): 025404.
[20] 吕海舟, 金鑫, 吴昀, 等. 电容层析成像技术应用于低温流体反演成像的研究现状[J]. 能源工程, 2024, 44(2): 67-76.
LV Haizhou, JIN Xin, WU Yun, et al. State of the art of electrical capacitance tomography applied to cryogenic fluid inversion imaging[J]. Energy engineering, 2024, 44(2): 67-76.
[21] YE Jiamin, WANG Haigang, YANG Wuqiang. Characterization of electrical capacitance tomography sensors with different diameter[J]. IEEE sensors journal, 2014, 14(7): 2240-2251.
[22] 张立峰, 常恩健. 基于多尺度密集连接网络的电容层析成像图像重建[J]. 计量学报, 2024, 45(5): 678-684.
ZHANG Lifeng, CHANG Enjian. Image reconstruction of electrical capacitance tomography based on multi-scale densely connected network[J]. Acta metrologica sinica, 2024, 45(5): 678-684.
[23] YE Z, BANASIAK R, SOLEIMANI M. Planar array 3D electrical capacitance tomography[J]. Insight-non-destructive testing and condition monitoring, 2013, 55(12): 675-680.
[24] MA G, SOLEIMANI M. A versatile 4D capacitive imaging array: a touchless skin and an obstacle-avoidance sensor for robotic applications[J]. Scientific reports, 2020, 10(1): 11525.
[25] HU Xiaohui, YANG Wuqiang. Planar capacitive sensors-designs and applications[J]. Sensor review, 2010, 30(1): 24-39.
[26] LIU Bo, TANG Chenhui, TANG Kaihao, et al. A water fraction measurement method using heuristic-algorithm-based electrical capacitance tomography images post-processing technology[J]. IEEE access, 2020, 8: 206418-206426.
[27] OSPINA-ACERO D, MARASHDEH Q M, TEIXEIRA F L. Relevance vector machine image reconstruction algorithm for electrical capacitance tomography with explicit uncertainty estimates[J]. IEEE sensors journal, 2020, 20(9): 4925-4939.
[28] FANG Weifu. A nonlinear image reconstruction algorithm for electrical capacitance tomography[J]. Measurement science and technology, 2004, 15(10): 2124-2132.
[29] 孙一心, 钟莹, 王向鸿, 等. 电容式触觉传感器信号检测系统的设计[J]. 纳米技术与精密工程, 2015(1): 28-33.
SUN Yixin, ZHONG Ying, WANG Xianghong, et al. Design of signal detection system of capacitive tactile sensor array[J]. Nanotechnology and precision engineering, 2015(1): 28-33.
[30] KE Guolin, MENG Qi, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[J]. Advances in neural information processing systems, 2017, 30: 1-9.
[31] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The annals of statistics, 2001, 29(5): 1189-1232.
[32] 丁建立, 孙玥. 基于LightGBM的航班延误多分类预测[J]. 南京航空航天大学学报, 2021, 53(6): 847-854.
DING Jianli, SUN Yue. Multi-classification prediction of flight delay based on LightGBM[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021, 53(6): 847-854.
[33] MOCKUS J. Application of Bayesian approach to numerical methods of global and stochastic optimization[J]. Journal of global optimization, 1994, 4(4): 347-365.
[34] 李亚茹, 张宇来, 王佳晨. 面向超参数估计的贝叶斯优化方法综述[J]. 计算机科学, 2022, 49(S1): 86-92.
LI Yaru, ZHANG Yulai, WANG Jiachen. Survey on Bayesian optimization methods for hyper-parameter tuning[J]. Computer science, 2022, 49(S1): 86-92.

备注/Memo

收稿日期:2024-8-29。
基金项目:国家自然科学基金国际合作重点项目(62120106005).
作者简介:许晓丽,硕士研究生,主要研究方向为电容传感器、机器人触觉感知。E-mail:suger-xu@hotmail.com。;郭旭东,教授,中国自动化学会智能自动化专业委员会委员,主要研究方向为嵌入式系统设计、智能传感器和智能诊断系统图像处理算法。E-mail:guoxd@usst.edu.cn。;刘华平,教授,中国人工智能学会理事、中国人工智能学会认知系统与信息处理专业委员会秘书长,吴文俊人工智能科学技术奖获得者。主要研究方向为机器人感知、学习与控制和多模态信息融合。主持国家自然科学基金重点项目2项,发表学术论文100 余篇。E-mail:hpliu@tsinghua.edu.cn。
通讯作者:刘华平. E-mail:hpliu@tsinghua.edu.cn

更新日期/Last Update: 2025-09-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com