[1]王茹,孙正,姚越.抑制心血管图像序列中运动伪影的无监督深度学习方法[J].智能系统学报,2025,20(4):984-998.[doi:10.11992/tis.202408014]
 WANG Ru,SUN Zheng,YAO Yue.Unsupervised deep learning method for suppressing motion artifacts in cardiac vascular image sequences[J].CAAI Transactions on Intelligent Systems,2025,20(4):984-998.[doi:10.11992/tis.202408014]
点击复制

抑制心血管图像序列中运动伪影的无监督深度学习方法

参考文献/References:
[1] SUWANNASOM P, CHICHAREON P, ROONGSANGMANOON W, et al. Impact of the adjunctive use criteria for intravascular ultrasound-guided percutaneous coronary intervention and clinical outcomes[J]. Scientific reports, 2023, 13(1): 711-711.
[2] MOHAN N C, JOHNSON T W. Intracoronary optical coherence tomography—an introduction[J]. Catheterization and cardiovascular interventions, 100(S1): S57-S65.
[3] LENG J, ZHANG J, LI C, et al. Multi-spectral intravascular photoacoustic/ultrasound/optical coherence tomography tri-modality system with a fully-integrated 0.9-mm full field-of-view catheter for plaque vulnerability imaging[J]. Biomedical optics express, 2021, 12(4): 1934-1946.
[4] KERMANI A, AYATOLLAHI A, TAKI A. Novel coronary tortuosity extraction using intravascular ultrasound sequence alone[C]//IEEE 2017 24th National and 2nd International Iranian Conference on Biomedical Engineering. Tehran: IEEE, 2017: 47-50.
[5] NIKOPOULOS S, PAPAFAKLIS MI, TSOMPOU P, et al. Virtual hemodynamic assessment of coronary lesions: the advent of functional angiography and coronary imaging[J]. Journal of clinical medicine, 2024, 13(8): 2243.
[6] TIAN Jinwei, PENG Xiang, ZHANG Yanwen, et al. In vivo detection of cholesterol crystals in atherosclerotic plaque with optical coherence tomography[C]//Cholesterol Crystals in Atherosclerosis and Other Related Diseases, Contemporary Cardiology. New York: Springer, 2023: 75-87.
[7] KYRIAKIDIS S, RIGAS G, KIGKA V, et al. An all-in-one tool for 2D atherosclerotic disease assessment and 3D coronary artery reconstruction[J]. Journal of cardiovascular development and disease, 2023, 10(3): 130.
[8] GAUR P, GRIECO A, FAINMAN Y. Multirate spectral domain optical coherence tomography[J]. IEEE photonics journal, 2023, 15(5): 1-10.
[9] JENSEN L O, THAYSSEN P. Accuracy of electrocardiographic-gated versus nongated volumetric intravascular ultrasound measurements of coronary arterial narrowing[J]. The American journal of cardiology, 2007, 99(2): 279-283.
[10] CECCHETTI L, WANG T, HOOGENDOORN A, et al. In-vitro and in-vivo imaging of coronary artery stents with Heartbeat OCT[J]. International journal of cardiovascular imaging, 2020, 36: 1021-1029.
[11] XIA Jun, CHEN Wanyi, MASLOV K, et al. Retrospective respiration-gated whole-body photoacoustic computed tomography of mice[J]. Journal of biomedical optics, 2014, 19(1): 016003.
[12] 孙正. 抑制冠状动脉内超声图像序列运动伪影的离线门控方法[J]. 光电子. 激光, 2010, 21(4): 632-638.
SUN Zheng. An off-line gating method for suppressing motion artifacts in intracoronary ultrasound image sequence[J]. Journal of optoelectronics·laser, 2010, 21(4): 632-638.
[13] SUN Zheng, DU Jiejie. Suppression of motion artifacts in intravascular photoacoustic image sequences[J]. Biomedical optics express, 2021, 12(11): 6909-6927.
[14] BAJAJ R, HUANG Xingru, KILIC Y, et al. A deep learning methodology for the automated detection of end-diastolic frames in intravascular ultrasound images[J]. International journal of cardiovascular imaging, 2021, 37(6): 1825-1837.
[15] SUN Zheng, YAO Yue, WANG Ru. An unsupervised deep learning framework for retrospective gating of catheter-based cardiac imaging[J]. IET signal processing, 2024: 5664618.
[16] DANILOUCHKINE M G, MASTIK F, VAN DER STEEN A F. A study of coronary artery rotational motion with dense scale-space optical flow in intravascular ultrasound[J]. Physics in medicine and biology, 2009, 54(6): 1397-1418.
[17] DANILOUCHKINE M G, MASTIK F, VAN DER STEEN A F. Improving IVUS palpography by incorporation of motion compensation based on block matching and optical flow[J]. IEEE transactions on ultrasonics ferroelectrics and frequency control, 2008, 55(11): 2392-2404.
[18] SUN Deqing, YANG Xiaodong, LIU Mingyu, et al. PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume[C]//Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8934-8943.
[19] LUO Kunming, WANG Chuan, LIU Shuaicheng, et al. UPFlow: upsampling pyramid for unsupervised optical flow learning[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 1045-1054.
[20] 张聪炫, 史世栋, 葛利跃, 等. 基于遮挡优化的金字塔块匹配光流估计方法[J]. 电子学报, 2023, 51(9): 2539-2548.
ZHANG Congxuan, SHI Shidong, GE Liyue, et al. Pyramid patch-matching optical flow estimation method based on occlusion optimization[J]. Acta electronica sinica, 2023, 51(9): 2539-2548.
[21] TALOU G D M, BLANCO P J, LARRABIDE I, et al. Registration methods for IVUS: transversal and longitudinal transducer motion compensation[J]. IEEE transactions on biomedical engineering, 2017, 64(4): 890-903.
[22] SUN Zheng, WANG Jianjian. Compensation of in-plane rigid motion for in vivo intracoronary ultrasound image sequence[J]. Computers in biology and medicine, 2013, 43(9): 1077-1085.
[23] 余升林, 吴彤, 葛明锋, 等. 循环一致性的无监督可变形图像配准方法[J]. 计算机辅助设计与图形学学报, 2023, 35(4): 516-524.
YU Shenglin, WU Tong, GE Mingfeng, et al. Unsupervised deformable image registration method with cyclic consistency[J]. Journal of computer-aided design & computer graphics, 2023, 35(4): 516-524.
[24] FU Yunguan, BROWN N M, SAEED S U, et al. DeepReg: a deep learning toolkit for medical image registration[J]. Journal of open source software, 2020, 5(55): 2705.
[25] JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial Transformer networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2015: 2017-2025.
[26] GüLER A R, TRIGEORGIS G, ANTONAKOS E, et al. DenseReg: fully convolutional dense shape regression in-the-wild[C]//Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6799-6808.
[27] 赵华秋, 谢勤岚. 一种用于心脏运动估计的快速图像配准方法[J]. 中南民族大学学报 (自然科学版), 2023, 42(1): 120-127.
ZHAO Huaqiu, XIE Qinlan. A fast image registration method for cardiac motion estimation[J]. Journal of South-central Minzu University(Natural Science Edition), 2023, 42(1): 120-127.
[28] 黄鹏, 郭春生, 陈华华, 等. 基于深度学习的图像配准方法综述[J]. 杭州电子科技大学学报(自然科学版), 2020, 40(6): 37-44.
HUANG Peng, GUO Chunsheng, CHEN Huahua, et al. An overview of image registration methods based on depth learning[J]. Journal of Hangzhou Dianzi University( Natural Sciences), 2020, 40(6): 37-44.
[29] 陈建明, 曾祥津, 钟丽云, 等. 基于深度学习的图像配准方法研究进展[J]. 量子电子学报, 2022, 39(6): 899-926.
CHEN Jianming, ZENG Xiangjin, ZHONG Liyun, et al. Research progress of image registration methods based on deep learning[J]. Chinese journal of quantum electronics, 2022, 39(6): 899-926.
[30] 应时辉, 杨菀, 杜少毅, 等. 基于深度学习的医学影像配准综述[J]. 模式识别与人工智能, 2021, 34(4): 287-299.
YING Shihui, YANG Wan, DU Shaoyi, et al. Deep learning based medical image registration: a review[J]. Pattern recognition and artificial intelligence, 2021, 34(4): 287-299.
[31] 周勤, 王远军. 基于深度学习的医学图像配准研究进展[J]. 上海理工大学学报, 2021, 43(5): 421-428.
ZHOU Qin, WANG Yuanjun. Advances in medical image registration based on deep learning[J]. Journal of University of Shanghai for Science and Technology, 2021, 43(5): 421-428.
[32] SUN Zheng, DU Jiejie, YAO Yue, et al. A deep learning method for motion artifact correction in intravascular photoacoustic image sequence[J]. IEEE transactions on medical imaging, 2023, 42(1): 68-78.
[33] HUR J, ROTH S. Iterative residual refinement for joint optical flow and occlusion estimation[C]//Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 5747-5756.
[34] DE WINTER S A, HAMERS R, DEGERTEKIN M, et al. Retrospective image-based gating of intracoronary ultrasound images for improved quantitative analysis: the intelligate method[J]. Catheterization and cardiovascular interventions, 2004, 61(1): 84-94.

备注/Memo

收稿日期:2024-8-15。
基金项目:国家自然科学基金项目(62071181).
作者简介:王茹,硕士研究生,主要研究方向为深度学习和血管内超声/OCT图像处理技术。E-mail:1820503691@qq.com。;孙正,教授,主要研究方向为医学影像技术、多模态成像技术、图像重建和反问题求解。主持国家自然科学基金项目、中国博士后科学基金项目等10余项,获发明专利授权30余项。发表学术论文 100 余篇,出版学术专著 2 部。E-mail:sunzheng@ncepu.edu.cn。;姚越,硕士研究生,主要研究方向为深度学习和心脏图像处理。E-mail:yaoyue1098599943@163.com。
通讯作者:孙正. E-mail:sunzheng@ncepu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com