[1]张浩晢,杨智博,焦绪国,等.基于自优化神经网络的船舶运动模型辨识[J].智能系统学报,2025,20(3):571-583.[doi:10.11992/tis.202408004]
 ZHANG Haozhe,YANG Zhibo,JIAO Xuguo,et al.Identification of ship motion model based on self-optimizing neural network[J].CAAI Transactions on Intelligent Systems,2025,20(3):571-583.[doi:10.11992/tis.202408004]
点击复制

基于自优化神经网络的船舶运动模型辨识

参考文献/References:
[1] 李永杰, 张瑞, 魏慕恒, 等. 船舶自主航行关键技术研究现状与展望[J]. 中国舰船研究, 2021, 16(1): 32-44.
LI Yongjie, ZHANG Rui, WEI Muheng, et al. State-of-the-art research and prospects of key technologies for ship autonomous navigation[J]. Chinese journal of ship research, 2021, 16(1): 32-44.
[2] HE H , ROSALES V J , ZWIJNSVOORDE V T , et al. Experimental assessment of speed adaptive track control of rudder-propeller-actuated ships based on model predictive control[J]. Ocean engineering, 2025, 326: 120824.
[3] 李国帅, 张显库, 张安超. 智能船舶靠泊技术研究热点与趋势[J]. 中国舰船研究, 2024, 19(1): 3-14.
LI Guoshuai, ZHANG Xianku, ZHANG Anchao. Research hotspots and tendency of intelligent ship berthing technology[J]. Chinese journal of ship research, 2024, 19(1): 3-14.
[4] OUYANG Zilu, CHEN Gang, ZOU Zaojian. Identification modeling of ship maneuvering motion based on local Gaussian process regression[J]. Ocean engineering, 2023, 267: 113251.
[5] CHEN Gang, WANG Wei, XUE Yifan. Identification of ship dynamics model based on sparse Gaussian process regression with similarity[J]. Symmetry, 2021, 13(10): 1956.
[6] JIANG Lichao, SHANG Xiaobing, JIN Bao, et al. Black-box modeling of ship maneuvering motion using multi-output least-squares support vector regression based on optimal mixed kernel function[J]. Ocean engineering, 2024, 293: 116663.
[7] JIANG Yan, HOU Xianrui, WANG Xuegang, et al. Identification modeling and prediction of ship maneuvering motion based on LSTM deep neural network[J]. Journal of marine science and technology, 2022, 27(1): 125-137.
[8] ZHOU Xiao, ZOU Lu, OUYANG Zilu, et al. Nonparametric modeling of ship maneuvering motions in calm water and regular waves based on R-LSTM hybrid method[J]. Ocean engineering, 2023, 285: 115259.
[9] WANG Ning, KONG Xiangjun, REN Boyu, et al. SeaBil: self-attention-weighted ultrashort-term deep learning prediction of ship maneuvering motion[J]. Ocean engineering, 2023, 287: 115890.
[10] BAI Shaojie, KOLTER J Z, KOLTUN V, et al. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[EB/OL]. (2018-03-04)[2024-01-01]. https://arxiv.org/abs/1803.01271v2.
[11] 周思思, 李勇, 郭钇秀, 等. 考虑时序特征提取与双重注意力融合的TCN超短期负荷预测[J]. 电力系统自动化, 2023, 47(18): 193-205.
ZHOU Sisi, LI Yong, GUO Yixiu, et al. Ultra-short-term load forecasting based on temporal convolutional network considering temporal feature extraction and dual attention fusion[J]. Automation of electric power systems, 2023, 47(18): 193-205.
[12] ZHANG Dongdong, CHEN Baian, ZHU Hongyu, et al. Short-term wind power prediction based on two-layer decomposition and BiTCN-BiLSTM-attention model[J]. Energy, 2023, 285: 128762.
[13] 李港, 李有为, 舒章康, 等. 基于时间卷积网络的长江下荆江航道水位预测[J]. 水利水运工程学报, 2023(6): 84-92.
LI Gang, LI Youwei, SHU Zhangkang, et al. Water level prediction of lower Jingjiang waterway in Yangtze River based on temporal convolution network[J]. Hydro-science and engineering, 2023(6): 84-92.
[14] LI Mingwei, XU Dongyang, GENG Jing, et al. A hybrid approach for forecasting ship motion using CNN–GRU–AM and GCWOA[J]. Applied soft computing, 2022, 114: 108084.
[15] 许德刚, 王再庆, 郭奕欣, 等. 鲸鱼优化算法研究综述[J]. 计算机应用研究, 2023, 40(2): 328-336.
XU Degang, WANG Zaiqing, GUO Yixin, et al. Review of whale optimization algorithm[J]. Application research of computers, 2023, 40(2): 328-336.
[16] LI Feng, ZUO Wei, ZHOU Kun, et al. State of charge estimation of lithium-ion batteries based on PSO-TCN-Attention neural network[J]. Journal of energy storage, 2024, 84: 110806.
[17] HE Hongwei, WANG Zihao, ZOU Zaojian, et al. Nonparametric modeling of ship maneuvering motion based on self-designed fully connected neural network[J]. Ocean engineering, 2022, 251: 111113.
[18] ZHANG Biao, WANG Sheng, DENG Liwei, et al. Ship motion attitude prediction model based on IWOA-TCN-Attention[J]. Ocean engineering, 2023, 272: 113911.
[19] DENG Lingyun, LIU Sanyang. Snow ablation optimizer: a novel metaheuristic technique for numerical optimization and engineering design[J]. Expert systems with applications, 2023, 225: 120069.
[20] GUO Siyuan, NING Zhi, LYU Ming. Path tracking and energy efficiency coordination control strategy for skid-steering unmanned ground vehicle[J]. Control engineering practice, 2024, 152: 106048.
[21] DING Lin, BAI Yulong, FAN Manhong, et al. Using a snow ablation optimizer in an autonomous echo state network for the model-free prediction of chaotic systems[J]. Nonlinear dynamics, 2024, 112(13): 11483-11500.
[22] 倪晓芳, 杨桂兰, 唐晓勇. 基于SAO-VMD-FFT的激光诱导荧光光谱信号信噪比提升方法[J]. 中国无机分析化学, 2024, 14(5): 677-684.
NI Xiaofang, YANG Guilan, TANG Xiaoyong. The methodology for enhancing the signal-to-noise ratio of laser-induced fluorescence spectroscopy based on SAO-VMD-FFT[J]. Chinese journal of inorganic analytical chemistry, 2024, 14(5): 677-684.
[23] 孙世明, 岑红星, 白建民, 等. 基于集成SAO优化互相关熵极限学习机模型的变压器故障诊断方法[J]. 电测与仪表, 2024, 61(9): 56-64.
SUN Shiming, CEN Hongxing, BAI Jianmin, et al. Transformer fault diagnosis method based on integrated correntropy extreme learning machine model optimized by SAO[J]. Electrical measurement & instrumentation, 2024, 61(9): 56-64.
[24] 郝志峰, 刘俊, 温雯, 等. 基于多序列隐关系的时序事件预测[J]. 计算机工程与应用, 2024, 60(7): 119-127.
HAO Zhifeng, LIU Jun, WEN Wen, et al. Temporal event prediction based on implicit relationship of multiple sequences[J]. Computer engineering and applications, 2024, 60(7): 119-127.
[25] XIAO Yaning, CUI Hao, HUSSIEN A G, et al. MSAO: a multi-strategy boosted snow ablation optimizer for global optimization and real-world engineering applications[J]. Advanced engineering informatics, 2024, 61: 102464.
[26] 贾鹤鸣, 刘庆鑫, 刘宇翔, 等. 融合动态反向学习的阿奎拉鹰与哈里斯鹰混合优化算法[J]. 智能系统学报, 2023, 18(1): 104-116.
JIA Heming, LIU Qingxin, LIU Yuxiang, et al. Hybrid Aquila and Harris Hawks optimization algorithm with dynamic opposition-based learning[J]. CAAI transactions on intelligent systems, 2023, 18(1): 104-116.
[27] SUN Pu, LIU Hao, ZHANG Yong, et al. An improved atom search optimization with dynamic opposite learning and heterogeneous comprehensive learning[J]. Applied soft computing, 2021, 103: 107140.
[28] 景坤雷, 赵小国, 张新雨, 等. 具有Levy变异和精英自适应竞争机制的蚁狮优化算法[J]. 智能系统学报, 2018, 13(2): 236-242.
JING Kunlei, ZHAO Xiaoguo, ZHANG Xinyu, et al. Ant lion optimizer with levy variation and adaptive elite competition mechanism[J]. CAAI transactions on intelligent systems, 2018, 13(2): 236-242.
[29] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in engineering software, 2016, 95: 51-67.
[30] 张达敏, 王义, 张琳娜. 种群分段变异学习和S型权重变色龙群算法[J]. 系统仿真学报, 2023, 35(1): 11-26.
ZHANG Damin, WANG Yi, ZHANG Linna. Chameleon swarm algorithm for segmental variation learning of population and S-type weight[J]. Journal of system simulation, 2023, 35(1): 11-26.
[31] 杨正理, 吴馥云, 陈海霞. 深度残差收缩网络的多特征锅炉炉管声波信号故障识别[J]. 智能系统学报, 2023, 18(5): 1108-1116.
YANG Zhengli, WU Fuyun, CHEN Haixia. Fault identification of multi-feature boiler tube acoustic signal based on deep residual shrinkage network[J]. CAAI transactions on intelligent systems, 2023, 18(5): 1108-1116.

备注/Memo

收稿日期:2024-8-9。
基金项目:国家自然科学基金项目(62203249,61803220);山东省重大创新工程项目(2022CXGC010608);山东省自然科学基金项目(ZR2021QF115).
作者简介:张浩晢,硕士研究生,主要研究方向为船舶运动建模、智能优化算法。E-mail:qutzhz@foxmail.com。;杨智博,讲师,主要研究方向为运动控制系统、智能优化算法。E-mail:yzblsn@163.com。;焦绪国,副教授,主要研究方向为电网优化、深度学习。E-mail:jiaoxuguo@qut.edu.cn。
通讯作者:杨智博. E-mail:yzblsn@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com