[1]沈昊,葛泉波,吴高峰.基于主干网络浅深层特征的无人机海上分割算法[J].智能系统学报,2025,20(3):605-620.[doi:10.11992/tis.202405021]
SHEN Hao,GE Quanbo,WU Gaofeng.Unmanned aerial vehicle-driven sea segmentation based on the shallow and deep features of the backbone[J].CAAI Transactions on Intelligent Systems,2025,20(3):605-620.[doi:10.11992/tis.202405021]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第3期
页码:
605-620
栏目:
学术论文—机器学习
出版日期:
2025-05-05
- Title:
-
Unmanned aerial vehicle-driven sea segmentation based on the shallow and deep features of the backbone
- 作者:
-
沈昊1, 葛泉波2,3,4, 吴高峰2
-
1. 南京信息工程大学 计算机学院, 江苏 南京 210044;
2. 南京信息工程大学 自动化学院, 江苏 南京 210044;
3. 大数据分析与智能系统江苏省高校重点实验室, 江苏 南京 210044;
4. 大气环境与装备技术协同创新中心, 江苏 南京 210044
- Author(s):
-
SHEN Hao1, GE Quanbo2,3,4, WU Gaofeng2
-
1. School of Computer, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China;
3. Jiangsu Provincial University Key Laboratory of Big Data Analysis and Intelligent Systems, Nanjing 210044, China;
4. Jiangsu Collaborative Innovation Center on Atmospheric Environment and Equipment Technology (CICAEET), Nanjing 210044, China
-
- 关键词:
-
复杂海上场景; 语义分割; 无人机降落; 船舶目标; DeepLabV3+; 注意力机制; 深度学习; 卷积神经网络
- Keywords:
-
complex maritime scene; semantic segmentation; drone landing; ship target; DeepLabV3+; attention mechanism; deep learning; convolutional neural network
- 分类号:
-
TP751
- DOI:
-
10.11992/tis.202405021
- 摘要:
-
为提高复杂海洋环境中无人机自主降落时分割目标的实时性和精确性,研究主干网络和浅深层特征对分割算法性能的影响问题,基于DeepLabV3+框架建立一种基于主干网络浅深层特征的无人机海上分割(shallow and deep features of backbone, SDFB)算法。首先,针对风浪扰动降低目标稳定性的问题,优化MobileNetV2结构提出一种特征提取方法,解决了算法无法处理短时间目标变化较大图像的问题;然后,针对深层特征输出通道数较多且存在不均匀分布大气湍流噪声的问题,利用本地全局信息选择性地聚合特征,提出一种特征筛选机制,剔除冗余通道的同时解决了算法对环境噪声敏感度高的问题;其次,针对光照不匀降低目标边界清晰度问题,从浅层空间维度和深层通道维度中提取轮廓信息建立一种并行轮廓学习机制,解决了算法利用轮廓特征效率低的问题;最后,针对障碍物遮挡破坏目标特征完整性问题,融合优化后的条带池化建立一种特征融合机制,解决了算法无法联系离散分布特征问题。实验表明,SDFB算法的实时性和精确性均高于其他算法,能够更好地适应海上场景无人机分割目标需求。
- Abstract:
-
To improve the real-time and accurate segmentation of targets during the autonomous landing of UAVs in complex marine environments, studying the impact of backbone and shallow/deep features on the performance of algorithms is crucial. Based on the DeepLabV3+ framework, a Shallow and Deep Features of Backbone (SDFB) algorithm is established for maritime scene segmentation. First, to address the issue of reduced target stability caused by wind-wave disturbances, a feature extraction method is proposed by optimizing the MobileNetV2 structure, and this method resolves the issue of low processing speed of single frame images in the algorithm. Second, to address the issue of numerous deep feature output channels and the uneven distribution of atmospheric turbulence noise, a feature filtering mechanism is proposed by selectively aggregating features using local and global information, thereby eliminating redundant features while solving the high sensitivity issue of the algorithm to environmental noise. Third, to address the issue of uneven lighting reducing the clarity of target boundaries, a parallel contour learning mechanism is established by extracting contour information from shallow spatial dimensions and deep channel dimensions, thereby solving the low-efficiency issue regarding the utilization of contour features. Finally, to address the issue of background occlusion disrupting the integrity of target features, a multi-scale feature fusion mechanism is established through the fusion optimization of strip pooling, and this solves the connection issue of the algorithm to discrete distribution features. Finally, relevant experiments reveal that the LMSC algorithm exhibits higher real-time accuracy than other algorithms and can better adapt to the segmentation requirements of UAVs in maritime scenes.
备注/Memo
收稿日期:2024-5-15。
基金项目:国家自然科学基金项目(62033010,62303233);江苏省高校青蓝工程项目(R2023Q07).
作者简介:沈昊,硕士研究生,主要研究方向为计算机视觉。E-mail:hshen_nuist@163.com。;葛泉波,教授,中国自动化学会青年工作委员会副主任委员、中国人工智能学会自主无人系统专业委员会副主任委员、中国自动化学会人工智能与机器人教育专业委员会副秘书长、中国自动化学会混合智能专业委员会副秘书长等。江苏省“青蓝工程”中青年学术带头人、浙江省万人计划“青年拔尖”入选者、中国自动化学会第四届青年科学家奖、浙江省杰出青年科学基金获得者等。主要研究方向为状态估计与信息融合、自主智能无人系统、飞行器测试数据分析和电力IOT技术。主持国家级科研项目12项,省部级科研项目7项,其余类别科研项目10项。发表学术论文92篇,制定专利/标准76项。E-mail:quanboge@163.com。;吴高峰,讲师,主要研究方向为航空火力控制、无人机任务规划与控制、机器学习及其在无人系统中应用。E-mail:wgf@nuist.edu.cn。
通讯作者:葛泉波. E-mail:quanboge@163.com
更新日期/Last Update:
1900-01-01