[1]黄志鸿,杜瑞,张辉.面向复杂电力环境场景理解的可见光和红外图像特征级融合方法[J].智能系统学报,2025,20(3):631-640.[doi:10.11992/tis.202404014]
 HUANG Zhihong,DU Rui,ZHANG Hui.Feature-level fusion method of visible and infrared images for scene understanding in complex power environments[J].CAAI Transactions on Intelligent Systems,2025,20(3):631-640.[doi:10.11992/tis.202404014]
点击复制

面向复杂电力环境场景理解的可见光和红外图像特征级融合方法

参考文献/References:
[1] 傅博, 姜勇, 王洪光, 等. 输电线路巡检图像智能诊断系统[J]. 智能系统学报, 2016, 11(1): 70-77.
FU Bo, JIANG Yong, WANG Hongguang, et al. Intelligent diagnosis system for patrol check images of power transmission lines[J]. CAAI transactions on intelligent systems, 2016, 11(1): 70-77.
[2] 张铭泉, 邢福德, 刘冬. 基于改进Faster R-CNN的变电站设备外部缺陷检测[J]. 智能系统学报, 2024, 19(2): 290-298.
ZHANG Mingquan, XING Fude, LIU Dong. External defect detection of transformer substation equipment based on improved Faster R-CNN[J]. CAAI transactions on intelligent systems, 2024, 19(2): 290-298.
[3] 冯晗, 姜勇. 使用改进Yolov5的变电站绝缘子串检测方法[J]. 智能系统学报, 2023, 18(2): 325-332.
FENG Han, JIANG Yong. A substation insulator string detection method based on an improved Yolov5[J]. CAAI transactions on intelligent systems, 2023, 18(2): 325-332.
[4] 黄志鸿, 颜星雨, 陶岩, 等. 基于多模态图像信息的配电网部件定位方法[J]. 湖南电力, 2024, 44(6): 83-89.
HUANG Zhihong, YAN Xingyu, TAO Yan, et al. Distribution network component positioning methods based on multi-modal image information[J]. Hunan electric power, 2024, 44(6): 83-89.
[5] 张辉, 杜瑞, 钟杭, 等. 电力设施多模态精细化机器人巡检关键技术及应用[J]. 自动化学报, 2025, 51(1): 20-42.
ZHANG Hui, DU Rui, ZHONG Hang, et al. The key technology and application of multi-modal fine robot inspection for power facilities[J]. Acta automatica sinica, 2025, 51(1): 20-42.
[6] 陶岩, 张辉, 黄志鸿, 等. 面向配电网典型部件的热故障精准判别方法[J]. 智能系统学报, 2025, 20(2): 506-515.
TAO Yan, ZHANG Hui, HUANG Zhihong, et al. Accurate identification of thermal faults for typical components of distribution networks[J]. CAAI transactions on intelligent systems, 2025, 20(2): 506-515.
[7] CHOI H, YUN J P, KIM B J, et al. Attention-based multimodal image feature fusion module for transmission line detection[J]. IEEE transactions on industrial informatics, 2022, 18(11): 7686-7695.
[8] XU Chang, LI Qingwu, JIANG Xiongbiao, et al. Dual-space graph-based interaction network for RGB-thermal semantic segmentation in electric power scene[J]. IEEE transactions on circuits and systems for video technology, 2023, 33(4): 1577-1592.
[9] ZHOU Wujie, LIU Jinfu, LEI Jingsheng, et al. GMNet: graded-feature multilabel-learning network for RGB-thermal urban scene semantic segmentation[J]. IEEE transactions on image processing, 2021, 30: 7790-7802.
[10] ZHOU Wujie, DONG Shaohua, XU Caie, et al. Edge-aware guidance fusion network for RGB-thermal scene parsing[EB/OL]. (2021-12-09)[2024-01-01]. https://arxiv.org/abs/2112.05144.
[11] LIU Jinfu, ZHOU Wujie, CUI Yueli, et al. GCNet: Grid-like context-aware network for RGB-thermal semantic segmentation[J]. Neurocomputing, 2022, 506: 60-67.
[12] LIN Baihong, LIN Zengrong, GUO Yulan, et al. Variational probabilistic fusion network for RGB-T semantic segmentation[EB/OL]. (2023-06-17)[2024-01-01]. https://arxiv.org/abs/2307.08536.
[13] LI Ping, CHEN Junjie, LIN Binbin, et al. Residual spatial fusion network for RGB-thermal semantic segmentation[EB/OL]. (2023-06-17)[2024-01-01]. https://arxiv.org/abs/2306.10364.
[14] ZHANG Jiyou, ZHANG Rongfen, LIU Yuhong, et al. RGB-T semantic segmentation based on cross-operational fusion attention in autonomous driving scenario[J]. Evolving systems, 2024, 15: 1429-1440.
[15] LIN Zengrong, LIN Baihong, GUO Yulan. Label-guided real-time fusion network for RGB-T semantic segmentation[C]//Proceedings of the British Machine Vision Conference. Aberdeen: BMVC, 2023: 767-770.
[16] SUN Yuxiang, ZUO Weixun, YUN Peng, et al. FuseSeg: semantic segmentation of urban scenes based on RGB and thermal data fusion[J]. IEEE transactions on automation science and engineering, 2021, 18(3): 1000-1011.
[17] ZHOU Wujie, LIN Xinyang, LEI Jingsheng, et al. MFFENet: multiscale feature fusion and enhancement network for RGB-thermal urban road scene parsing[J]. IEEE transactions on multimedia, 2021, 24: 2526-2538.
[18] DENG Fuqin, FENG Hua, LIANG Mingjian, et al. FEANet: feature-enhanced attention network for RGB-thermal real-time semantic segmentation[C]//2021 IEEE/RSJ International Conference on Intelligent Robots and Systems. Prague: IEEE, 2021: 4467–4473.
[19] FAN Siqi, WANG Zhe, WANG Yan, et al. SpiderMesh: spatial-aware demand-guided recursive meshing for RGB-T semantic segmentation[EB/OL]. (2023-09-27)[2024-01-01]. https://arxiv.org/abs/2303.08692v2.
[20] LIN Baihong, LIN Zengrong, GUO Yulan, et al. Asymmetric multimodal guidance fusion network for real-time visible–thermal semantic segmentation[J]. Robotics and computer-integrated manufacturing, 2024, 86: 103822.
[21] ZHANG Jiaming, LIU Huayao, YANG Kailun, et al. CMX: cross-modal fusion for RGB-X semantic segmentation with transformers[J]. IEEE transactions on intelligent transportation systems, 24(12): 14679-14694.
[22] LI Gongyang, WANG Yike, LIU Zhi, et al. RGB-T semantic segmentation with location, activation, and sharpening[J]. IEEE transactions on circuits and systems for video technology, 2022, 33(3): 1223–1235.
[23] SHIN U, LEE K, KWEON I S, et al. Complementary random masking for RGB-thermal semantic segmentation[C]// 2024 IEEE International Conference on Robotics and Automation. Yokohama: IEEE, 2014: 11110-11117.
[24] WANG Yuxin, LI Gongyang, LIU Zhi. SGFNet: semantic-guided fusion network for RGB-thermal semantic segmentation[J]. IEEE transactions on circuits and systems for video technology, 2023, 33(12): 7737-7748.
[25] LI Gongyang, WANG Yike, LIU Zhi, et al. RGB-T semantic segmentation with location, activation, and sharpening[J]. IEEE transactions on circuits and systems for video technology, 2023, 33(3): 1223-1235.
[26] ZHOU Zikun, WU Shukun, ZHU Guoqing, et al. Channel and spatial relation-propagation network for RGB-thermal semantic segmentation[EB/OL]. (2023-08-24)[2024-01-01]. https://arxiv.org/abs/2308.12534.
[27] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[EB/OL]. (2021-06-03)[2024-01-01]. https://arxiv.org/abs/2010.11929.
[28] MAO Anqi, MOHRI Mehryar, ZHONG Yutao. Cross-entropy loss functions: theoretical analysis and applications[EB/OL]. (2023-06-15)[2024-01-01]. https://arxiv.org/pdf/2304.07288v1.
[29] ZHANG Zhi, SABUNCU M R. Generalized cross entropy loss for training deep neural networks with noisy labels[J]. Advances in neural information processing systems, 2018, 31: 8792-8802.
[30] SUDRE C H, LI Wenqi, VERCAUTEREN T, et al. Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations[EB/OL]. (2017-07-14)[2024-01-01]. https://arxiv.org/abs/1707.03237.
[31] LI Xiaoya, SUN Xiaofei, MENG Yuxian, et al. Dice loss for data-imbalanced NLP tasks[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, 2020: 465–476. ?

备注/Memo

收稿日期:2024-4-16。
基金项目:国网湖南省电力有限公司科技项目(5216A522001Y).
作者简介:黄志鸿,高级工程师,博士研究生,主要研究方向为电力人工智能。E-mail:zhihong_huang111@163.com。;杜瑞,博士研究生,主要研究方向为电力人工智能、多模态感知。E-mail:durui@hnu.edu.cn。;张辉,教授,博士生导师,博士,主要研究方向为机器人视觉检测、深度学习、图像识别、机器人智能控制、嵌入式系统应用。近年来,主持科技创新2030—“新一代人工智能”重大项目课题、国家自然科学基金共融机器人重大研究计划重点项目,国家重点研发计划子课题、国家科技支撑计划项目子课题等20余项。技术成果获2018年国家技术发明奖二等奖,以主要完成人获得省部级科学技术奖励一等奖8项。发表学术论文50余篇,获国家发明专利授权38项、计算机软件著作权5项。E-mail:zhanghuihby@126.com。
通讯作者:张辉. E-mail:zhanghuihby@126.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com