[1]赵振兵,席悦,冯烁,等.面向复杂场景的变电设备锈蚀检测方法[J].智能系统学报,2025,20(3):679-688.[doi:10.11992/tis.202403044]
ZHAO Zhenbing,XI Yue,FENG Shuo,et al.Corrosion detection method for complex scenario substation equipment[J].CAAI Transactions on Intelligent Systems,2025,20(3):679-688.[doi:10.11992/tis.202403044]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
20
期数:
2025年第3期
页码:
679-688
栏目:
学术论文—智能系统
出版日期:
2025-05-05
- Title:
-
Corrosion detection method for complex scenario substation equipment
- 作者:
-
赵振兵1,2,3, 席悦1, 冯烁1, 赵文清2,4, 翟永杰4, 李冰4
-
1. 华北电力大学 电子与通信工程系, 河北 保定 071003;
2. 华北电力大学 复杂能源系统智能计算教育部工程研究中心, 河北 保定 071003;
3. 华北电力大学 河北省电力物联网技术重点实验室, 河北 保定 071003;
4. 华北电力大学 控制与计算机工程学院, 河北 保定 071003
- Author(s):
-
ZHAO Zhenbing1,2,3, XI Yue1, FENG Shuo1, ZHAO Wenqing2,4, ZHAI Yongjie4, LI Bing4
-
1. Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, China;
2. Engineering Research Center of Intelligent Computing for Complex Energy Systems of Ministry of Education, North China Electric Power University, Baoding 071003, China;
3. Hebei Key Laboratory of Power Internet of Things Technology, North China Electric Power University, Baoding 071003, China;
4. School of Control and Computer Engineering, North China Electric Power University, Baoding 071003, China
-
- 关键词:
-
变电设备; 不规则缺陷; 锈蚀检测; YOLOv8; 注意力机制; 多尺度特征; 检测头; 复杂场景; 电力视觉
- Keywords:
-
substation equipment; irregular defect; corrosion detection; YOLOv8; attention mechanism; multi-scale feature; detection head; complex scenarios; power computer vision
- 分类号:
-
TP183
- DOI:
-
10.11992/tis.202403044
- 摘要:
-
针对复杂场景下变电设备锈蚀检测中存在锈蚀形态差异大、尺度大小不一、特征显著性低等问题,提出了一种面向复杂场景的变电设备锈蚀检测方法。引入了频率通道注意力机制,通过更多的频率分量补充深层网络中的细节特征,优化模型对锈蚀特征的提取;在特征融合网络中使用多尺度特征增强模块重新构建C2f模块,使网络可以更好地捕获不同大小的锈蚀区域;引入附加检测头,缓解模型在特征融合过程中因卷积层下采样造成的锈蚀关键信息丢失的情况,从而提高变电设备锈蚀检测的精度。实验结果表明,改进以后的网络模型相较于原始的YOLOv8m模型,平均检测精度(mAP50)提升了5.1%,检测效果也优于其他主流目标检测模型,为变电设备锈蚀检测提供了新的参考方法。
- Abstract:
-
To address the significant challenges posed by significant variations in corrosion morphology, varying scales, and low feature saliency in corrosion detection in substation equipment under complex scenarios, a corrosion detection method for complex scenario substation equipment is proposed. First, frequency channel attention networks are introduced, leveraging additional frequency components to complement the fine-grained features in deep networks, thus optimizing the extraction of corrosion-related features. Second, within the feature fusion network, the multi-scale module is employed to rebuild the C2f module, thereby allowing the network to better capture corrosion areas of different sizes. Finally, the additional detection head mitigates crucial corrosion-related information loss during feature fusion caused by downsampling, thereby enhancing corrosion detection accuracy. The relevant experimental results reveal a 5.1% improvement in the average detection accuracy (mAP50/%) compared with the results obtained by the original YOLOv8m model. Overall, this improved model outperforms other mainstream object detection models, thereby representing a novel approach for substation equipment corrosion detection.
备注/Memo
收稿日期:2024-3-28。
基金项目:国家自然科学基金项目(U21A20486, 62373151, 62371188, 62303184);中央高校基本科研业务费专项资金项目(2023JC006);河北省自然科学基金项目(F2021502008, F2021502013).
作者简介:赵振兵,教授,博士,主要研究方向为电力视觉。主持国家自然科学基金项目等纵向课题10项;获省科技进步奖一等奖2项;以第一完成人获得国家专利授权16项;以第一作者出版专著2部、发表学术论文50余篇。E-mail:zhaozhenbing@ncepu.edu.cn。;席悦,硕士研究生,主要研究方向为电力视觉。E-mail:17325207795@163.com。;冯烁,博士研究生,主要研究方向为电力视觉。E-mail:fs_ncepu@163.com。
通讯作者:赵振兵. E-mail:zhaozhenbing@ncepu.edu.cn
更新日期/Last Update:
1900-01-01