[1]赵振兵,席悦,冯烁,等.面向复杂场景的变电设备锈蚀检测方法[J].智能系统学报,2025,20(3):679-688.[doi:10.11992/tis.202403044]
 ZHAO Zhenbing,XI Yue,FENG Shuo,et al.Corrosion detection method for complex scenario substation equipment[J].CAAI Transactions on Intelligent Systems,2025,20(3):679-688.[doi:10.11992/tis.202403044]
点击复制

面向复杂场景的变电设备锈蚀检测方法

参考文献/References:
[1] 赵振兵, 冯烁, 赵文清, 等. 融合知识迁移和改进YOLOv6的变电设备热像检测方法[J]. 智能系统学报, 2023, 18(6): 1213-1222.
ZHAO Zhenbing, FENG Shuo, ZHAO Wenqing, et al. Thermd image detection method for substation equipment by incorporating knowledge migration and improved YOLOv6[J]. CAAI transactions on intelligent systems, 2023, 18(6): 1213-1222.
[2] 吴添权, 戴美胜, 杨刚, 等. 基于改进Mask-RCNN模型的电力设备锈蚀识别[J]. 电力信息与通信技术, 2021, 19(4): 25-30.
WU Tianquan, DAI Meisheng, YANG Gang, et al. Corrosion detection of power equipment based on improved mask-RCNN model[J]. Electric power information and communication technology, 2021, 19(4): 25-30.
[3] 王凌云, 李婷宜, 李阳, 等. 基于FEF-DeepLabV3+的电力金具锈蚀分割方法[J]. 电子测量与仪器学报, 2023, 37(7): 166-176.
WANG Lingyun, LI Tingyi, LI Yang, et al. Segmentation method of power armor clamp corrosion based on FEF-DeepLabV3+[J]. Journal of electronic measurement and instrumentation, 2023, 37(7): 166-176.
[4] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91-110.
[5] ZHU Qiang, YEH M C, CHENG K T, et al. Fast human detection using a cascade of histograms of oriented gradients[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2006: 1491-1498.
[6] 刘传洋, 吴一全. 基于深度学习的输电线路视觉检测方法研究进展[J]. 中国电机工程学报, 2023, 43(19): 7423-7446.
LIU Chuanyang, WU Yiquan. Research progress of vision detection methods based on deep learning for transmission lines[J]. Proceedings of the CSEE, 2023, 43(19): 7423-7446.
[7] ZHANG Yu, LI Weixing, ZHOU Jian, et al. Substation equipment abnormity detection based on improved YOLOv5[C]//2022 41st Chinese Control Conference. Hefei: IEEE, 2022: 6654-6659.
[8] ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IoU loss: Faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12993-13000.
[9] XU Bo, DING Yuan. Research on the application of deep learning object detection in rust defect detection of power equipment[C]//2023 3rd International Conference on Electrical Engineering and Mechatronics Technology. Nanjing: IEEE, 2023: 770-775.
[10] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[11] 张迎晨, 王波, 马富齐, 等. 基于域适应网络的电力设备不规则外表面缺陷高精度检测方法[J]. 高电压技术, 2022, 48(11): 4516-4526.
ZHANG Yingchen, WANG Bo, MA Fuqi, et al. High-precision detection method of irregular outer surface defects of power equipment based on domain adaptation network[J]. High voltage engineering, 2022, 48(11): 4516-4526.
[12] 于豪, 蒋锦霞, 赖晓翰, 等. 基于自适应感受野的电力设备表面缺陷检测方法[J]. 系统仿真学报, 2023, 35(7): 1572-1580.
YU Hao, JIANG Jinxia, LAI Xiaohan, et al. Surface defect detection of power equipment using adaptive receptive field network[J]. Journal of system simulation, 2023, 35(7): 1572-1580.
[13] CHEN Xiaojiao, AN Zhenyu, HUANG Liansheng, et al. Surface defect detection of electric power equipment in substation based on improved YOLOV4 algorithm[C]//2020 10th International Conference on Power and Energy Systems. Chengdu: IEEE, 2020: 256-261.
[14] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020–04–23)[2024–01–01]. https://arxiv.org/abs/2004.10934v1.
[15] DAI Yan, HAN Rui, LIU Li, et al. Research on substation equipment rust detection method based on improved SSD[C]//2021 International Conference on Advanced Electrical Equipment and Reliable Operation. Beijing: IEEE, 2021: 1-3.
[16] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Computer Vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21-37.
[17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[18] ZHANG Sheng, DENG Xinling, LU Yumin, et al. A channel attention based deep neural network for automatic metallic corrosion detection[J]. Journal of building engineering, 2021, 42: 103046.
[19] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[20] QIN Zequn, ZHANG Pengyi, WU Fei, et al. FcaNet: frequency channel attention networks[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 763-772.
[21] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
[22] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
[23] LIN Min, CHEN Qiang, YAN Shuicheng. Network in network[EB/OL]. (2014-03-04)[2024-01-01]. https://arxiv.org/abs/1312.4400v3.
[24] AHMED N, NATARAJAN T, RAO K R. Discrete cosine transform[J]. IEEE transactions on computers, 1974, C-23(1): 90-93.
[25] LIU Jiangjiang, HOU Qibin, CHENG Mingming, et al. Improving convolutional networks with self-calibrated convolutions[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10093-10102.
[26] LEE C Y, XIE S, GALLAGHER P, et al. Deeply-supervised nets[C]//Artificial intelligence and statistics. San Diego: PMLR, 2015: 562-570.
[27] FENG Chengjian, ZHONG Yujie, GAO Yu, et al. TOOD: task-aligned one-stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 3490-3499.
[28] LI Xiang, WANG Wenhai, WU Lijun, et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection[J]. Advances in neural information processing systems, 2020, 33: 21002-21012.
[29] LI Chuyi, LI Lulu, JIANG Hongliang, et al. YOLOv6: A single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07)[2024-01-01]. https://arxiv.org/abs/2209.02976.
[30] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[EB/OL]. (2022-07-06)[2024-01-01]. https://arxiv.org/abs/2207.02696v1.
[31] ZHAO Yian, LYU Wenyu, XU Shangliang, ZHAO Y, et al. Detrs beat yolos on real-time object detection[EB/OL]. (2023-07-06)[2024-01-01]. https://arxiv.org/abs/2304.08069.
[32] WANG C Y, YEH I H, LIAO H M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL]. (2024-02-29)[2024-03-28]. https://arxiv.org/abs/2402.13616v2.
相似文献/References:
[1]王凯旋,任福继,倪红军,等.基于循环互相关系数的CGAN温度值图像扩增[J].智能系统学报,2022,17(1):32.[doi:10.11992/tis.202106036]
 WANG Kaixuan,REN Fuji,NI Hongjun,et al.Image amplification for temperature value image based on cyclic cross-correlation coefficient CGAN[J].CAAI Transactions on Intelligent Systems,2022,17():32.[doi:10.11992/tis.202106036]
[2]赵振兵,冯烁,赵文清,等.融合知识迁移和改进YOLOv6的变电设备热像检测方法[J].智能系统学报,2023,18(6):1213.[doi:10.11992/tis.202303030]
 ZHAO Zhenbing,FENG Shuo,ZHAO Wenqing,et al.Thermd image detection method for substation equipment by incorporating knowledge migration and improved YOLOv6[J].CAAI Transactions on Intelligent Systems,2023,18():1213.[doi:10.11992/tis.202303030]

备注/Memo

收稿日期:2024-3-28。
基金项目:国家自然科学基金项目(U21A20486, 62373151, 62371188, 62303184);中央高校基本科研业务费专项资金项目(2023JC006);河北省自然科学基金项目(F2021502008, F2021502013).
作者简介:赵振兵,教授,博士,主要研究方向为电力视觉。主持国家自然科学基金项目等纵向课题10项;获省科技进步奖一等奖2项;以第一完成人获得国家专利授权16项;以第一作者出版专著2部、发表学术论文50余篇。E-mail:zhaozhenbing@ncepu.edu.cn。;席悦,硕士研究生,主要研究方向为电力视觉。E-mail:17325207795@163.com。;冯烁,博士研究生,主要研究方向为电力视觉。E-mail:fs_ncepu@163.com。
通讯作者:赵振兵. E-mail:zhaozhenbing@ncepu.edu.cn

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com