[1]孔英会,崔文婷,张珂,等.融合关键区域信息的双流网络视频表情识别[J].智能系统学报,2025,20(3):658-669.[doi:10.11992/tis.202401031]
 KONG Yinghui,CUI Wenting,ZHANG Ke,et al.Two-stream network video expression recognition by fusing key region information[J].CAAI Transactions on Intelligent Systems,2025,20(3):658-669.[doi:10.11992/tis.202401031]
点击复制

融合关键区域信息的双流网络视频表情识别

参考文献/References:
[1] 彭小江, 乔宇. 面部表情分析进展和挑战[J]. 中国图象图形学报, 2020, 25(11): 2337-2348.
PENG Xiaojiang, QIAO Yu. Advances and challenges in facial expression analysis[J]. Journal of image and graphics, 2020, 25(11): 2337-2348.
[2] SHAN Caifeng, GONG Shaogang, MCOWAN P W. Facial expression recognition based on local binary patterns: a comprehensive study[J]. Image and vision computing, 2009, 27(6): 803-816.
[3] ZHAO Guoying, PIETIK?INEN M. Dynamic texture recognition using local binary patterns with an application to facial expressions[J]. IEEE transactions on pattern analysis and machine intelligence, 2007, 29(6): 915-928.
[4] ZHI Ruicong, FLIERL M, RUAN Qiuqi, et al. Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition[J]. IEEE transactions on systems, man, and cybernetics Part B, Cybernetics, 2011, 41(1): 38-52.
[5] ZHONG Lin, LIU Qingshan, YANG Peng, et al. Learning active facial patches for expression analysis[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 2562-2569.
[6] 应自炉, 张有为, 李景文. 融合人脸局部区域的表情识别[J]. 信号处理, 2009, 25(6): 963-966.
YING Zilu, ZHANG Youwei, LI Jingwen. Facial expression recognition by fusing local facial regions[J]. Journal of signal processing, 2009, 25(6): 963-966.
[7] 何俊, 蔡建峰, 房灵芝. 基于LBP特征的融合脸部关键表情区域的表情识别方法[C]//第27届中国控制与决策会议. 青岛: 信息科技, 2015: 1209-1213.
HE Jun, CAI Jianfeng, FANG Lingzhi. Facial expression recognition method based on LBP feature fusion of key facial expression regions [C]// 27th China Control and Decision Conference. Qingdao: Information Technology, 2015: 1209-1213.
[8] JAIN S, HU Changbo, AGGARWAL J K. Facial expression recognition with temporal modeling of shapes[C]//2011 IEEE International Conference on Computer Vision Workshops. Barcelona: IEEE, 2011: 1642-1649.
[9] SIKKA K, SHARMA G, BARTLETT M. LOMo: latent ordinal model for facial analysis in videos[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 5580-5589.
[10] ZHANG Kaihao, HUANG Yongzhen, DU Yong, et al. Facial expression recognition based on deep evolutional spatial-temporal networks[J]. IEEE transactions on image processing, 2017, 26(9): 4193-4203.
[11] FENG Duo, REN Fuji. Dynamic facial expression recognition based on two-stream-CNN with LBP-TOP[C]//2018 5th IEEE International Conference on Cloud Computing and Intelligence Systems. Nanjing: IEEE, 2018: 355-359.
[12] CHEN Tuo, XING Shuai, YANG Wenwu, et al. Spatio-temporal features based human facial expression recognition[J]. Journal of image and graphics, 2022, 27(7): 2185-2198.
[13] HASANI B, MAHOOR M H. Facial expression recognition using enhanced deep 3D convolutional neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Honolulu: IEEE, 2017: 2278-2288.
[14] 张隽睿. 基于深度学习的静态和动态面部表情识别研究[D]. 成都: 电子科技大学, 2022.
ZHANG Junrui. Research on static and dynamic facial expression recognition based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[15] 刘菁菁, 吴晓峰. 基于长短时记忆网络的多模态情感识别和空间标注[J]. 复旦学报(自然科学版), 2020, 59(5): 565-574.
LIU Jingjing, WU Xiaofeng. Real-time multimodal emotion recognition and emotion space labeling using LSTM networks[J]. Journal of Fudan University (natural science), 2020, 59(5): 565-574.
[16] FARHOUDI Z, SETAYESHI S. Fusion of deep learning features with mixture of brain emotional learning for audio-visual emotion recognition[J]. Speech communication, 2021, 127: 92-103.
[17] FERNANDEZ P D M, PENA F A G, REN T I, et al. FERAtt: facial expression recognition with attention net[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE, 2019: 837-846.
[18] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[M]//Medical Image Computing and Computer-Assisted Intervention. Cham: Springer International Publishing, 2015: 234-241.
[19] MENG Debin, PENG Xiaojiang, WANG Kai, et al. Frame attention networks for facial expression recognition in videos[C]//2019 IEEE International Conference on Image Processing. Taipei: IEEE, 2019: 3866-3870.
[20] 李同霞. 基于表征流嵌入网络的动态表情识别[D]. 南京: 南京邮电大学, 2022.
LI Tongxia. Dynamic expression recognition based on representation stream embedding network[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022.
[21] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[22] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
[23] WANG Dong, GAO Feng, DONG Junyu, et al. Change detection in synthetic aperture radar images based on convolutional block attention module[C]//2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp). Shanghai: IEEE, 2019: 1-4.
[24] SIMONYAN K, ZISSERMAN A, SIMONYAN K, et al. Two-stream convolutional networks for action recognition in videos[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems- Volume 1. [S.l.]: ACM, 2014: 568-576.
[25] FARNEB?CK G. Two-frame motion estimation based on polynomial expansion[C]//Image Analysis. Berlin: Springer Berlin Heidelberg, 2003: 363-370.
[26] LUCEY P, COHN J F, KANADE T, et al. The extended Cohn-kanade dataset (CK): a complete dataset for action unit and emotion-specified expression[C]//2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops. San Francisco: IEEE, 2010: 94-101.
[27] OLIVIER M, IRENE K, BENOIT M, et al. The eNTERFACE’05 audio-visual emotion database[C]//Proceedings of the 22nd International Conference on Data Engineering Workshops. [S.l.]: IEEE, 2006: 8-15.
[28] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 618-626.
[29] MA Fei, HUANG Shaolun, ZHANG Lin. An efficient approach for audio-visual emotion recognition with missing labels and missing modalities[C]//2021 IEEE International Conference on Multimedia and Expo. Shenzhen: IEEE, 2021: 1-6.
[30] ZHAO Jianfeng, MAO Xia, ZHANG Jian. Learning deep facial expression features from image and optical flow sequences using 3D CNN[J]. The visual computer, 2018, 34(10): 1461-1475.
相似文献/References:
[1]陈斌,朱晋宁.双流增强融合网络微表情识别[J].智能系统学报,2023,18(2):360.[doi:10.11992/tis.202109036]
 CHEN Bin,ZHU Jinning.Micro-expression recognition based on a dual-stream enhanced fusion network[J].CAAI Transactions on Intelligent Systems,2023,18():360.[doi:10.11992/tis.202109036]

备注/Memo

收稿日期:2024-1-24。
基金项目:国家自然科学基金项目(62076093).
作者简介:孔英会,教授,主要研究方向为机器学习与计算机视觉。发表学术论文50余篇。E-mail:kongyh2005@163.com。;崔文婷,硕士研究生,主要研究方向为计算机视觉。E-mail:1595470319@qq.com。;张珂,教授,主要研究方向为计算机视觉和电力人工智能。发表学术论文100余篇。E-mail:zhangkeit@ncepu.edu.cn。
通讯作者:孔英会. E-mail:kongyh2005@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com