[1]王英博,郭凯雪.视图映射和循环一致性生成的不完整多视图聚类[J].智能系统学报,2025,20(2):316-328.[doi:10.11992/tis.202311044]
 WANG Yingbo,GUO Kaixue.Incomplete multiview clustering based on view mapping and cyclic consistency generation[J].CAAI Transactions on Intelligent Systems,2025,20(2):316-328.[doi:10.11992/tis.202311044]
点击复制

视图映射和循环一致性生成的不完整多视图聚类

参考文献/References:
[1] 刘晓琳, 白亮, 赵兴旺, 等. 基于多阶近邻融合的不完整多视图聚类算法[J]. 软件学报, 2022, 33(4): 1354-1372.
LIU Xiaolin, BAI Liang, ZHAO Xingwang, et al. Incomplete multi-view clustering algorithm based on multi-order neighborhood fusion[J]. Journal of software, 2022, 33(4): 1354-1372.
[2] XUE Zhe, DU Junping, DU Dawei, et al. Deep low-rank subspace ensemble for multi-view clustering[J]. Information sciences, 2019, 482: 210-227.
[3] 赵博宇, 张长青, 陈蕾, 等. 生成式不完整多视图数据聚类[J]. 自动化学报, 2021, 47(8): 1867-1875.
ZHAO Boyu, ZHANG Changqing, CHEN Lei, et al. Generative model for partial multi-view clustering[J]. Acta automatica sinica, 2021, 47(8): 1867-1875.
[4] KANG Zhao, GUO Zipeng, HUANG Shudong, et al. Multiple partitions aligned clustering[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: AAAI, 2019: 2701-2707.
[5] 范瑞东, 侯臣平. 鲁棒自加权的多视图子空间聚类[J]. 计算机科学与探索, 2021, 15(6): 1062-1073.
FAN Ruidong, HOU Chenping. Robust auto-weighted multi-view subspace clustering[J]. Journal of frontiers of computer science and technology, 2021, 15(6): 1062-1073.
[6] 刘相男, 丁世飞, 王丽娟. 基于深度图正则化矩阵分解的多视图聚类算法[J]. 智能系统学报, 2022, 17(1): 158-169.
LIU Xiangnan, DING Shifei, WANG Lijuan. A multi-view clustering algorithm based on deep matrix factorization with graph regularization[J]. CAAI transactions on intelligent systems, 2022, 17(1): 158-169.
[7] HUANG Zhenyu, ZHOU J T, PENG Xi, et al. Multi-view spectral clustering network[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: IJCAI, 2019: 2563-2569.
[8] TANG Chang, LIU Xinwang, ZHU Xinzhong, et al. CGD: multi-view clustering via cross-view graph diffusion[C]//Proceedings of the AAAI conference on artificial intelligence. New York: AAAI, 2020, 34(4): 5924-5931.
[9] 张熠玲, 杨燕, 周威, 等. CMvSC: 知识迁移下的深度一致性多视图谱聚类网络[J]. 软件学报, 2022, 33(4): 1373-1389.
ZHANG Yiling, YANG Yan, ZHOU Wei, et al. CMvSC: knowledge transferring based deep consensus network for multi-view spectral clustering[J]. Journal of software, 2022, 33(4): 1373-1389.
[10] KANG Zhao, SHI Guoxin, HUANG Shudong, et al. Multi-graph fusion for multi-view spectral clustering[J]. Knowledge-based systems, 2020, 189: 105102.
[11] TAO Hong, HOU Chenping, YI Dongyun, et al. Joint embedding learning and low-rank approximation: a framework for incomplete multiview learning[J]. IEEE transactions on cybernetics, 2021, 51(3): 1690-1703.
[12] WANG Qianqian, LIAN Huanhuan, SUN Gan, et al. iCmSC: incomplete cross-modal subspace clustering[J]. IEEE transactions on image processing, 2021, 30: 305-317.
[13] CHAO Guoqing, SUN Shiliang, BI Jinbo. A survey on multi-view clustering[J]. IEEE transactions on artificial intelligence, 2021, 2(2): 146-168.
[14] ZHANG He, SINDAGI V, PATEL V M. Image de-raining using a conditional generative adversarial network[J]. IEEE transactions on circuits and systems for video technology, 2020, 30(11): 3943-3956.
[15] TREVISAN DE SOUZA V L, MARQUES B A D, BATAGELO H C, et al. A review on generative adversarial networks for image generation[J]. Computers & graphics, 2023, 114: 13-25.
[16] KARRAS T, LAINE S, AILA T. A style-based generator architecture for generative adversarial networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4396-4405.
[17] TRAN L, LIU Xiaoming, ZHOU Jiayu, et al. Missing modalities imputation via cascaded residual autoencoder[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4971-4980.
[18] SHANG Chao, PALMER A, SUN Jiangwen, et al. VIGAN: Missing view imputation with generative adversarial networks[C]//2017 IEEE International Conference on Big Data. Boston: IEEE, 2017: 766-775.
[19] LI Shaoyuan, JIANG Yuan, ZHOU Zhihua. Partial multi-view clustering[C]//Proceedings of the AAAI conference on artificial intelligence. Palo Alto: AAAI, 2014: 1968-1974.
[20] SHAO Weixiang, HE Lifang, YU P S. Multiple incomplete views clustering via weighted nonnegative matrix factorization with L2, 1 regularization[C]//Proceedings of the 2015 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2015: 318-334.
[21] WEN Jie, ZHANG Zheng, ZHANG Zhao, et al. Generalized incomplete multiview clustering with flexible locality structure diffusion[J]. IEEE transactions on cybernetics, 2021, 51(1): 101-114.
[22] LIU Zhenjiao, CHEN Zhikui, LI Yue, et al. IMC-NLT: Incomplete multi-view clustering by NMF and low-rank tensor[J]. Expert systems with applications, 2023, 221: 119742.
[23] LIU Xinwang, ZHU Xinzhong, LI Miaomiao, et al. Multiple kernel k-means with incomplete kernels[J]. IEEE transactions on pattern analysis and machine intelligence, 2020, 42(5): 1191-1204.
[24] LIU Xinwang, LI Miaomiao, TANG Chang, et al. Efficient and effective regularized incomplete multi-view clustering[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(8): 2634-2646.
[25] WANG Hao, ZONG Linlin, LIU Bing, et al. Spectral perturbation meets incomplete multi-view data[EB/OL]. (2019-06-31)[2023-11-30]. https://arxiv.org/abs/1906.00098.
[26] WEN Jie, XU Yong, LIU Hong. Incomplete multiview spectral clustering with adaptive graph learning[J]. IEEE transactions on cybernetics, 2020, 50(4): 1418-1429.
[27] LI Zhenglai, TANG Chang, ZHENG Xiao, et al. High-order correlation preserved incomplete multi-view subspace clustering[J]. IEEE transactions on image processing, 2022, 31: 2067-2080.
[28] WANG Qianqian, DING Zhengming, TAO Zhiqiang, et al. Partial multi-view clustering via consistent GAN[C]//2018 IEEE International Conference on Data Mining. Singapore: IEEE, 2018: 1290-1295.
[29] 崔金荣, 黄诚. 改进的自步深度不完备多视图聚类[J]. 数据采集与处理, 2022, 37(5): 1036-1048.
CUI Jinrong, HUANG Cheng. Improved self-paced deep incomplete multi-view clustering[J]. Journal of data acquisition and processing, 2022, 37(5): 1036-1048.
[30] 张智慧, 杨燕, 张熠玲. 面向不完整多视图聚类的深度互信息最大化方法[J]. 智能系统学报, 2023, 18(1): 12-22.
ZHANG Zhihui, YANG Yan, ZHANG Yiling. Deep mutual information maximization method for incomplete multi-view clustering[J]. CAAI transactions on intelligent systems, 2023, 18(1): 12-22.
相似文献/References:
[1]张继福,张素兰,胡立华.约束概念格及其构造方法[J].智能系统学报,2006,1(2):31.
 ZHANG Ji-fu,ZHANG Su-lan,HU Li-hua.Constrained concept lattice and its construction method[J].CAAI Transactions on Intelligent Systems,2006,1():31.
[2]王国胤,张清华,胡? 军.粒计算研究综述[J].智能系统学报,2007,2(6):8.
 WANG Guo-yin,ZHANG Qing-hua,HU Jun.An overview of granular computing[J].CAAI Transactions on Intelligent Systems,2007,2():8.
[3]杨小兵,何灵敏,孔繁胜.切换回归模型的抗噪音聚类算法[J].智能系统学报,2009,4(6):497.[doi:10.3969/j.issn.1673-4785.2009.06.005]
 YANG Xiao-bing,HE Ling-min,KONG Fan-sheng.A noise-resistant clustering algorithm for switching regression models[J].CAAI Transactions on Intelligent Systems,2009,4():497.[doi:10.3969/j.issn.1673-4785.2009.06.005]
[4]季瑞瑞,刘?? 丁.支持向量数据描述的基因表达数据聚类方法[J].智能系统学报,2009,4(6):544.[doi:10.3969/j.issn.1673-4785.2009.06.013]
 JI Rui-rui,LIU Ding.Improved gene expression data clustering using a support vector domain description algorithm[J].CAAI Transactions on Intelligent Systems,2009,4():544.[doi:10.3969/j.issn.1673-4785.2009.06.013]
[5]张秀玲,逄宗鹏,李少清,等.ANFIS的板形控制动态影响矩阵方法[J].智能系统学报,2010,5(4):360.
 ZHANG Xiu-ling,PANG Zong-peng,LI Shao-qing,et al.A dynamic influence matrix method for flatness control based on adaptivenetworkbased fuzzy inference systems[J].CAAI Transactions on Intelligent Systems,2010,5():360.
[6]李伟,杨晓峰,张重阳,等.复杂网络社团的投影聚类划分[J].智能系统学报,2011,6(1):57.
 LI Wei,YANG Xiaofeng,ZHANG Chongyang,et al.A clustering method for community detection on complex networks[J].CAAI Transactions on Intelligent Systems,2011,6():57.
[7]陈岳峰,苗夺谦,李文,等.基于概念的词汇情感倾向识别方法[J].智能系统学报,2011,6(6):489.
 CHEN Yuefeng,MIAO Duoqian,LI Wen,et al.Semantic orientation computing based on concepts[J].CAAI Transactions on Intelligent Systems,2011,6():489.
[8]何清.物联网与数据挖掘云服务[J].智能系统学报,2012,7(3):189.
 HE Qing.The Internet of things and the data mining cloud service[J].CAAI Transactions on Intelligent Systems,2012,7():189.
[9]方然,苗夺谦,张志飞.一种基于情感的中文微博话题检测方法[J].智能系统学报,2013,8(3):208.
 FANG Ran,MIAO Duoqian,ZHANG Zhifei.An emotion-based method of topic detection from Chinese microblogs[J].CAAI Transactions on Intelligent Systems,2013,8():208.
[10]李海林,郭韧,万校基.基于特征矩阵的多元时间序列最小距离度量方法[J].智能系统学报,2015,10(3):442.[doi:10.3969/j.issn.1673-4785.201405047]
 LI Hailin,GUO Ren,WAN Xiaoji.A minimum distance measurement method for amultivariate time series based on the feature matrix[J].CAAI Transactions on Intelligent Systems,2015,10():442.[doi:10.3969/j.issn.1673-4785.201405047]
[11]刘大莲,田英杰.可拓数据挖掘在学生成绩分析中的应用研究[J].智能系统学报,2022,17(4):707.[doi:10.11992/tis.202112020]
 LIU Dalian,TIAN Yingjie.Application of extension data mining in student achievement analysis[J].CAAI Transactions on Intelligent Systems,2022,17():707.[doi:10.11992/tis.202112020]
[12]张智慧,杨燕,张熠玲.面向不完整多视图聚类的深度互信息最大化方法[J].智能系统学报,2023,18(1):12.[doi:10.11992/tis.202203051]
 ZHANG Zhihui,YANG Yan,ZHANG Yiling.Deep mutual information maximization method for incomplete multi-view clustering[J].CAAI Transactions on Intelligent Systems,2023,18():12.[doi:10.11992/tis.202203051]

备注/Memo

收稿日期:2023-11-30。
基金项目:辽宁省教育厅基础研究项目(LN2020JCL029).
作者简介:王英博,教授,高级工程师,博士生导师,主要研究方向为数据挖掘、智能数据处理、图像与视觉信息计算。主持、参与完成国家重点基础研究发展计划项目、国家科技支撑计划项目等10余项。发表学术论文50余篇,出版专著1部。E-mail:wybustb@ 126.com;郭凯雪,硕士研究生,主要研究方向为数据挖掘和智能数据处理。E-mail:1336701301@qq.com。
通讯作者:王英博. E-mail:wybustb@126.com

更新日期/Last Update: 2025-03-05
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com