[1]姜立超,尚晓兵,王伟,等.基于混合核函数ν-SVR的船舶操纵运动非参数建模方法[J].智能系统学报,2024,19(6):1376-1384.[doi:10.11992/tis.202310001]
JIANG Lichao,SHANG Xiaobing,WANG Wei,et al.Nonparametric modeling method of ship maneuvering motion based on the ν-SVR with mixed kernel function[J].CAAI Transactions on Intelligent Systems,2024,19(6):1376-1384.[doi:10.11992/tis.202310001]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
19
期数:
2024年第6期
页码:
1376-1384
栏目:
学术论文—机器学习
出版日期:
2024-12-05
- Title:
-
Nonparametric modeling method of ship maneuvering motion based on the ν-SVR with mixed kernel function
- 作者:
-
姜立超, 尚晓兵, 王伟, 张智, 李嘉祺
-
哈尔滨工程大学 智能科学与工程学院, 黑龙江 哈尔滨 150001
- Author(s):
-
JIANG Lichao, SHANG Xiaobing, WANG Wei, ZHANG Zhi, LI Jiaqi
-
College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
-
- 关键词:
-
非参数模型; 混合核函数; 系统辨识; ν-SVR; 船舶操纵运动; 遗传算法; SIMMAN2008; KVLCC2
- Keywords:
-
nonparametric modeling; mixed kernel function; system identification; ν-SVR; ship maneuvering motion; genetic algorithm; SIMMAN2008; KVLCC2
- 分类号:
-
TP18; U661.33
- DOI:
-
10.11992/tis.202310001
- 摘要:
-
非参数建模方法已广泛应用于船舶操纵运动建模。本文提出一种基于混合核函数(mixed kernel function, MK)的ν-支持向量回归(ν-support vector regression, ν-SVR)非参数建模方法,并采用遗传算法(genetic algorithm, GA)优化超参数,即遗传算法优化的混合核函数ν-支持向量回归(genetic algorithm-mixed kernel-ν-support vector regression, GA-MK-ν-SVR)。为了提高ν-SVR的性能,提出一种混合核函数,该核函数结合径向基和多项式核函数来同时捕获全局和局部性能。基于遗传算法,模型的超参数实现了优化。采用SIMMAN2008提供的KVLCC2油轮自由自航测试数据对该建模方法的性能进行了评估,并与多种现有操纵模型的预测结果进行了对比研究。试验结果表明,所提出的GA-MK-ν-SVR模型对船舶操纵运动具有良好的预测精度和较强的泛化能力。
- Abstract:
-
Nonparametric modeling methods are widely used in modeling ship maneuvering motions. This study introduces a v-support vector regression (v-SVR) nonparametric modeling method based on a mixed kernel function (MK), optimized through a genetic algorithm (GA) called GA-MK-v-SVR. The MK aims to improve the performance of v-SVR by combining radial basis functions with polynomial kernel functions, thus capturing both global and local characteristics. A GA is employed to fine-tune the hyper-parameters. The performance of GA-MK-v-SVR was evaluated by using KVLCC2 free-running test data provided by SIMMAN 2008, and the results were compared with several maneuvering models. Experimental results show that the proposed GA-MK-v-SVR model delivers impressive prediction accuracy and robust generalization capabilities for ship maneuvering motion modeling.
备注/Memo
收稿日期:2023-10-6。
基金项目:国家自然科学基金项目(62303129);黑龙江省自然科学基金项目(LH2023F022);中央高校基本科研基金项目(3072024XX0404).
作者简介:姜立超,博士研究生,主要研究方向为船舶运动预报与控制。E-mail:jlc13304605640@163.com;尚晓兵,讲师,主要研究方向为复杂系统建模与仿真技术、不确定性量化。E-mail:shangxiaobing@163.com;王伟,博士研究生,主要研究方向为强化学习与群体智能。E-mail:wangw_0229@hrbeu.edu.cn。
通讯作者:尚晓兵. E-mail:shangxiaobing@163.com
更新日期/Last Update:
2024-11-05