[1]JIANG Tongwei,JIANG Yong.Human-machine cooperative object grasping method based on virtual force guidance[J].CAAI Transactions on Intelligent Systems,2021,16(4):683-689.[doi:10.11992/tis.202007046]

Human-machine cooperative object grasping method based on virtual force guidance

[1] 刘金存. 带电作业机器人主从控制的研究[D]. 济南: 山东建筑大学, 2014.
LIU Jincun. Master-slave control research of live working robot[D]. Ji’nan: Shandong Jianzhu University, 2014.
[2] DRAGAN A D, SRINIVASA S S. A policy-blending formalism for shared control[J]. The international journal of robotics research, 2013, 32(7): 790-805.
[3] JAVDANI S, ADMONI H, PELLEGRINELLI S, et al. Shared Autonomy via hindsight optimization for teleoperation and teaming[J]. The international journal of robotics research, 2018, 37(7): 717-742.
[4] ROSENBERG L B. Virtual fixtures: perceptual tools for telerobotic manipulation[C]//Proceedings of 1993 IEEE Virtual Reality Annual International Symposium. Seattle, WA, USA, 1993: 76-82.
[5] BU Wanghui, LIU Guangjun, LIU Chengju. Online generation of virtual fixture for bilateral teleoperation based on intention recognition[C]//Proceedings of 2016 International Conference on Advanced Robotics and Mechatronics (ICARM). Macau, China, 2016: 122-126.
[6] LEE K H, PRUKS V, RYU J H. Development of shared autonomy and virtual guidance generation system for human interactive teleoperation[C]//Proceedings of the 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI). Jeju, Korea (South), 2017: 457-461.
[7] ROZENBLIT J W, FENG C, RIOJAS M, et al. The computer assisted surgical trainer: design, models, and implementation[C]//Proceedings of 2014 Summer Simulation Multiconference. Monterey, USA, 2014: 211-220.
[8] BALACHANDRAN R, KOZLOVA N, OTT C, et al. Non-linear local force feedback control for haptic interfaces[J]. IFAC-PapersOnLine, 2018, 51(22): 486-492.
[9] NIKOLAIDIS S, ZHU Yuxiang, HSU D, et al. Human-robot mutual adaptation in shared autonomy[C]//Proceedings of the 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI). Vienna, Austria, 2017: 294-302.
[10] WANG Xinyu, YANG Chenguang, MA Hongbin, et al. Shared control for teleoperation enhanced by autonomous obstacle avoidance of robot manipulator[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany, 2015: 4575-4580.
[11] HONG M, ROZENBLIT J W. A haptic guidance system for Computer-Assisted Surgical Training using virtual fixtures[C]//Proceedings of 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). Budapest, Hungary, 2016: 2230-2235.
[12] LIU Manlu, LING Qiang, ZHANG Jing, et al, Bilateral control of teleoperation manipulator based on virtual force aware guidance[C]//Proceedings of 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM). Ningbo, China, 2017: 231-236.
[13] BOWYER S A, DAVIES B L, BAENA F R. Active constraints/virtual fixtures: a survey[J]. IEEE transactions on robotics, 2014, 30(1): 138-157.
[14] WANG Wenrui, ZHU Mingchao, WANG Xiaoming, et al. An improved artificial potential field method of trajectory planning and obstacle avoidance for redundant manipulators[J]. The international journal of advanced robotic systems, 2018, 15(5).
[15] BETTINI A, MARAYONG P, LANG S, et al. Vision-assisted control for manipulation using virtual fixtures[J]. IEEE transactions on robotics, 2004, 20(6): 953-966.
[16] MARAYONG P, BETTINI A, OKAMURA A. Effect of virtual fixture compliance on human-machine cooperative manipulation[C]//Proceedings of 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems. Lausanne, Switzerland, 2002: 1089-1095.
[17] KIM D J, HAZLETT-KNUDSEN R, CULVER-GODFREY H, et al. How autonomy impacts performance and satisfaction: results from a study with spinal cord injured subjects using an assistive robot[J]. IEEE transactions on systems, man, and cybernetics - part A: systems and humans, 2012, 42(1): 2-14.
[18] YOU E, HAUSER K. Assisted teleoperation strategies for aggressively controlling a robot arm with 2D input[M]//DURRANT-WHYTE H, ROY N, ABBEEL P. Robotics: Science and Systems VII. Los Angeles: MIT Press, 2012: 354-361.
Similar References:



Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems