[1]XIE Guangming,BAI Yanbing,WU Ziang,et al.Review of LLM-based recommendation systems[J].CAAI Transactions on Intelligent Systems,2025,20(6):1520-1533.[doi:10.11992/tis.202410007]
Copy

Review of LLM-based recommendation systems

References:
[1] 项亮. 推荐系统实践[M]. 北京: 人民邮电出版社, 2012.
[2] COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. Boston: ACM, 2016: 191-198.
[3] AIVAZOGLOU M, ROUSSOS A O, MARGARIS D, et al. A fine-grained social network recommender system[J]. Social network analysis and mining, 2019, 10(1): 8.
[4] QUESTMOBILE. QuestMobile2023中国移动互联网年度报告[EB/OL]. (2024-01-30)[2025-02-24]. https://www.questmobile.com.cn/research/report.
[5] GU Siyu, SHENG Xiangrong. On ranking consistency of pre-ranking stage[EB/OL]. (2022-05-03)[2025-02-24]. https://arxiv.org/abs/2205.01289.
[6] ZHAO W X, ZHOU Kun, LI Junyi, et al. A survey oflarge language models[EB/OL]. (2023-05-31)[2025-02-24]. https://arxiv.org/abs/2303.18223.
[7] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.
[8] ELMAN J. Finding structure in time[J]. Cognitive science, 1990, 14(2): 179-211.
[9] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems30 (NIPS2017). Long Beach: Curran Associates Inc, 2017: 5998-6008.
[10] PETERS M, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter Of the Association for Computational Linguistics: Human LanguageTechnologies. New Orleans: USAACL, 2018: 2227-2237.
[11] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Minnesota: Association for Computational Linguistics, 2019: 4171-4186.
[12] OUYANG L, WU J, JIANG Xu, et al. Training language models to follow instructions with human feedback[C]//Advances in Neural Information Processing Systems 35 (NeurIPS 2022). Louisiana: Curran Associates Inc, 2022: 27730-27744.
[13] LEWIS M, LIU Yinhan, GOYAL N, et al. Bart: denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[EB/OL]. (2019-10-29)[2025-02-24]. https://arxiv.org/abs/1910.13461.
[14] RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with aunified text-to-text Transformer[EB/OL]. (2019-10-23)[2025-02-24]. https://artxiv.org/abs/1910.10683.
[15] ZHANG Zhengyan, HAN Xu, LIU Zhiyuan, et al. ERNIE: enhanced language representation with informative entities[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Florence, Stroudsburg: USAACL, 2019: 1441-1451.
[16] LIU Yinhan, OTT M, GOYAL N, et al. RoBERTa: A robustly optimized BERT pretraining approach[EB/OL]. (2019-07-26)[2024-05-21]. https://arxiv.org/abs/1907.11692.
[17] LAN Z, CHEN M, GOODMAN S, et al. Albe-rt: a lite BERT for self-supervised learning of language representations[C]//8th International Conference on Learning Representations. [S.l.]: Open Access, 2020.
[18] LIU Aixin, FENG Bei, XUE Bing, et al. Deepseek-v3 technical report[EB/OL]. (2024-12-27)[2025-01-01]. https://arxiv.org/abs/2412.19437.
[19] GUO D, YANG Dejian, ZHANG Haowei, et al. DeepSeek-R1:incentivizing reasoning capability in LLMs via reinforcement learning[EB/OL]. (2025-01-22)[2025-02-02]. https://arxiv.org/abs/2501.12948.
[20] ACHIAM J, ADLER S, AGARWAL S, et al. GPT-4 technical report[EB/OL]. (2024-05-04)[2025-02-24]. https://arxiv.org/pdf/2303.08774.
[21] ZHANG Susan, ROLLER S, GOYAL N, et al. OPT:open pre-trained Transformer language models[EB/OL]. (2022-05-02)[2025-02-24]. https://arxiv.org/abs/2205.01068.
[22] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[EB/OL]. (2023-02-27)[2025-02-24]. https://arxiv.org/abs/2302.13971.
[23] TOUVRON H, MARTIN L, STONE K, et al. LLaMA 2: open foundation and fine-tuned chat models[EB/OL]. (2023-07-18)[2025-02-24]. https://arxiv.org/abs/2307.09288.
[24] DUBEY A, JAUHRIi A, PANDEY A, et al. The LLaMA 3 herd of models[EB/OL]. (2024-07-31)[2025-02-24]. https://arxiv.org/abs/2407.21783.
[25] BAI Yuntao, JONES A, NDOUSSE K, et al. Training a helpful and harmless assistant with reinforcement learning from human feedback[EB/OL]. (2022-04-12)[2025-02-24]. https://arxiv.org/abs/2204.05862.
[26] LIU H, LI C, WU Q, et al. Visual instruction tuning[C]//Advances in Neural Information Processing Systems 36 (NeurIPS2023). Louisiana: Curran Associates Inc, 2023: 34892-34916.
[27] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[C]//The 38thInternationalConference on Machine Learning. [S.l.]: Curran Associates Inc, 2021: 8748-8763.
[28] DEY R, SALEM F M. Gate-variants of gated recurrent unit (GRU) neural networks[C]//2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). Boston: IEEE, 2017: 1597-1600.
[29] LIU Pengfei, YUAN Weizhe, FU Jinlan, et al. Pre-train, prompt, and predict: a systematic survey of prompting methods in natural language processing[J]. ACM computing surveys, 2023, 55(9): 1-35.
[30] WANG Qi, LI Jindong, WANG Shiqi, et al. Towards next-generation LLM-based recommender systems: a survey and beyond[EB/OL]. (2024-10-10)[2025-02-24]. https://arxiv.org/abs/2410.19744.
[31] LIN Jianghao, DAI Xinyi, XI Yunjia, et al. How can recommender systems benefit from large language models: a survey[EB/OL]. (2023-07-09)[2025-02-24]. https://arxiv.org/abs/2306.05817.
[32] ZHAO Zihuai, FAN Wenqi, LI Jiatong, et al. Recommender systems in the era of large language models (LLMS)[EB/OL]. (2023-07-05)[2025-02-24]. https://arxiv.org/abs/2307.02046.
[33] GUO Huifeng, TANG Ruiming, YE Yunming, et al. DeepFM: a factorization-machine based neural network for CTR prediction[EB/OL]. (2017-05-13)[2025-02-24]. https://arxiv.org/abs/1703.04247.
[34] LIAN Jianxun, ZHOU Xiaohuan, ZHANG Fuzheng, et al. xDeepFM: combining explicit and implicit feature interactions for recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018: 1754-1763.
[35] WANG R, FU B, FU G, et al. Deep and crossnetwork for adclick predictions[C]//Proceedings of the ADKDD’17. Halifax: Associationfor Computing Machinery, 2017: 1-7.
[36] WANG Ruoxi, SHIVANNA R, CHENG D, et al. DCN V2: improved deep & cross network and practical lessons for web-scale learning to rank systems[C]//Proceedings of the Web Conference 2021. Ljubljana: ACM, 2021: 1785-1797.
[37] MA Jiaqi, ZHAO Zhe, YI Xinyang, et al. Modeling task relationships in multi-task learning with multi-gate mixture-of-experts[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018: 1930-1939.
[38] TANG Hongyan, LIU Junning, ZHAO Ming, et al. Progressive layered extraction (PLE): a novel multi-task learning (MTL) model for personalized recommendations[C]//Fourteenth ACM Conference on Recommender Systems. Brazil: ACM, 2020: 269-278.
[39] CHANG Jianxin, ZHANG Chenbin, HUI Yiqun, et al. PEPNet: parameter and embedding personalized network for infusing with personalized prior information[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Long Beach: ACM, 2023: 3795-3804.
[40] SWIETOJANSKI P, LI Jinyu, RENALS S. Learning hidden unit contributions for unsupervised acoustic model adaptation[J]. IEEE/ACM transactions on audio, speech, and language processing, 2016, 24(8): 1450-1463.
[41] ZHOU Guorui, ZHU Xiaoqiang, SONG Chenru, et al. Deep interest network for click-through rate prediction[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018: 1059-1068.
[42] ZHOU Guorui, MOU Na, FAN Ying, et al. Deep interest evolution network for click-through rate prediction[J]. Proceedings of the AAAI conference on artificial intelligence, 2019, 33(1): 5941-5948.
[43] PI Qi, ZHOU Guorui, ZHANG Yujing, et al. Search-based user interest modeling with lifelong sequential behavior data for click-through rate prediction[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. [S.l.]: ACM, 2020: 2685-2692.
[44] CHANG Jianxin, ZHANG Chenbin, FU Zhiyi, et al. TWIN: two-stage interest network for lifelong user behavior modeling in CTR prediction at Kuaishou[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Long Beach: ACM, 2023: 3785-3794.
[45] ZHU Han, LI Xiang, ZHANG Pengye, et al. Learning tree-based deep model for recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London: ACM, 2018: 1079-1088.
[46] GAO Weihao, FAN Xiangjun, WANG Chong, et al. Deep retrieval: Learning a retrievable structure for large-scale recommendations[EB/OL]. (2020-07-12)[2025-02-24]. https://arxiv.org/abs/2007.07203.
[47] VAN DEN OORD A, VINYALS O, KAVUKCUOGLU K, et al. Neural discrete representation learning[C]//Advances in Neural Information Processing Systems 30. California: Curran Associates Inc, 2017.
[48] RAJPUT S, MEHTA N, SINGH A, et al. Recommender Systems with Generative Retrieval[C]//Advances in Neural Information Processing Systems 36. Louisiana: Curran Associates Inc, 2023: 10299-10315.
[49] QIU Zhaopeng, WU Xian, GAO Jingyue, et al. U-BERT: pre-training user representations for improved recommendation[J]. Proceedings of the AAAI conference on artificial intelligence, 2021, 35(5): 4320-4327.
[50] DING Hao, MA Yifei, DEORAS A, et al. Zero-shot recommender systems[EB/OL]. (2021-05-18)[2025-02-24]. https://arxiv.org/abs/2105.08318.
[51] HOU Yupeng, MU Shanlei, ZHAO W X, et al. Towards universal sequence representation learning for recommender systems[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington DC: ACM, 2022: 585-593.
[52] HOU Yupeng, HE Zhankui, MCAULEY J, et al. Learning vector-quantized item representation for transferable sequential recommenders[C]//Proceedings of the ACM Web Conference 2023. Austin: ACM, 2023: 1162-1171.
[53] SHAZEER N, MIRHOSEINI A, MAZIARZ K, et al. Outrageously large neural networks: the sparsely-gated mixture-of-experts layer[C]//International Conference on Learning Represent-ations. Toulon: openreview. net, 2017.
[54] GE Tiezheng, HE Kaiming, KE Qifa, et al. Optimized product quantization[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(4): 744-755.
[55] SUN Fei, LIU Jun, WU Jian, et al. BERT4Rec: sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. Beijing: ACM, 2019: 1441-1450.
[56] WU Chuhan, WU Fangzhao, QI Tao, et al. PTUM: pre-traininguser model fromunlabeled user behaviors via self-supervision[EB/OL]. (2020-10-04)[2025-02-24]. https://arxiv.org/abs/2010.01494.
[57] LIN Junyang, MEN Rui, YANG An, et al. M6: a Chinese multimodal pre-trainer[EB/OL]. (2021-05-01)[2025-02-24]. https://arxiv.org/abs/2103.00823.
[58] WANG Yuhao, ZHAO Xiangyu, CHEN Bo, et al. PLATE: a prompt-enhanced paradigm for multi-scenario recommendations[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. Taipei: ACM, 2023: 1498-1507.
[59] GAO Yunfan, SHENG Tao, XIANG Youlin, et al. Chat-rec: Towards interactive and explainable LLMS-augmented recommender system[EB/OL]. (2023-05-25)[2025-02-24]. https://arxiv.org/abs/2303.14524.
[60] FRIEDMAN L, AHUJA S, ALLEN D, et al. Leveraging large language models in conversational recommender systems[EB/OL]. (2023-05-13)[2025-02-24]. https://arxiv.org/abs/2305.07961.
[61] ZHANG Zizhuo, WANG Bang. Prompt learning for news recommendation[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. Taipei: ACM, 2023: 227-237.
[62] LIU Yuqing, WANG Yu, SUN Lichao, et al. Rec-GPT4V: multimodal recommendation with large vision-language models[EB/OL]. (2024-02-13)[2025-02-24]. https://arxiv.org/abs/2402.08670.
[63] YE Yuyang, ZHENG Zhi, SHEN Yishan, et al. Harnessing multimodal large language models for multimodal sequential recommendation[EB/OL]. (2024-08-19)[2025-05-20]. https://arxiv.org/abs/2408.09698.
[64] TIAN Jiahao, ZHAO Jinman, WANG Zhenkai, et al. MMREC: LLM based multi-modal recommender system[EB/OL]. (2024-08-08)[2025-02-24]. https://arxiv.org/abs/2408.04211.
[65] ZHAI Jiaqi, LIAO L, LIU Xing, et al. Actions speak louder than words: trillion-parameter sequential transducers for generative recommendations[EB/OL]. (2024-02-27)[2025-02-24]. https://arxiv.org/abs/2402.17152.
[66] ZHANG Buyun, LUO Liang, CHEN Yuxin, et al. Wukong: towards a scaling law for large-scale recom-mendation[EB/OL]. (2024-05-04)[2025-02-24]. https://arxiv.org/abs/2403.02545.
[67] ZHANG Chao, WU Shiwei, ZHANG Haoxin, et al. NoteLLM: a retrievable large language model for note recommendation[C]//Companion Proceedings of the ACM Web Conference 2024. Singapore: ACM, 2024: 170-179.
[68] ZHAO Qian, QIAN Hao, LIU Ziqi, et al. Breaking the barrier: utilizing large language models for industrial recommendation systems through an inferential knowledge graph[C]//Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. Boise: ACM, 2024: 5086-5093.
[69] JIA Jian, WANG Yipei, LI Yan, et al. LEARN: knowledge adaptation from large language model to recommendation for practical industrial application[EB/OL]. (2024-12-26)[2025-02-24]. https://arxiv.org/abs/2405.03988.
[70] CUI Yu, LIU Feng, WANG Pengbo, et al. Distillation matters: empowering sequential recommenders to match the performance of large language models[C]//18th ACM Conference on Recommender Systems. Bari: ACM, 2024: 507-517.
[71] FAN Xinyan, LIU Zheng, LIAN Jianxun, et al. Lighter and better: low-rank decomposed self-attention networks for next-item recommendation[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: ACM, 2021: 1733-1737.
[72] WHITE C, SAFARI M, SUKTHANKER R, et al. Neural architecture search: Insights from 1000 papers[EB/OL]. (2023-01-20)[2025-02-24]. https://arxiv.org/abs/2301.08727.
[73] LI Qinbin, WEN Zeyi, WU Zhaomin, et al. A survey on federated learning systems: vision, hype and reality for data privacy and protection[J]. IEEE transactions on knowledge and data engineering, 2023, 35(4): 3347-3366.
[74] ZHAO Haiyan, CHEN Hanjie, YANG Fan, et al. Explainability for large language models: a survey[J]. ACM transactions on intelligent systems and technology, 2024, 15(2): 1-38.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems