[1]CHEN Zhongshang,FENG Ji,YANG Degang,et al.Hybrid neighborhood graph-based hierarchical clustering algorithm for datasets with complex structures[J].CAAI Transactions on Intelligent Systems,2025,20(3):584-593.[doi:10.11992/tis.202407001]
Copy

Hybrid neighborhood graph-based hierarchical clustering algorithm for datasets with complex structures

References:
[1] CHENG Zhanhong, TRéPANIER M, SUN Lijun. Probabilistic model for destination inference and travel pattern mining from smart card data[J]. Transportation, 2021, 48(4): 2035-2053.
[2] YOON B, JEONG Y, KIM S. Detecting a risk signal in stock investment through opinion mining and graph-based semi-supervised learning[J]. IEEE access, 2020, 8: 161943-161957.
[3] CAI Shousong, ZHANG Jing. Exploration of credit risk of P2P platform based on data mining technology[J]. Journal of computational and applied mathematics, 2020, 372: 112718.
[4] TAVALLALI P, TAVALLALI P, SINGHAL M. K-means tree: an optimal clustering tree for unsupervised learning[J]. The journal of supercomputing, 2021, 77(5): 5239-5266.
[5] ZHU Qidan, TANG Xiangmeng, ELAHI A. Application of the novel harmony search optimization algorithm for DBSCAN clustering[J]. Expert systems with applications, 2021, 178: 115054.
[6] CHEN Yewang, ZHOU Lida, BOUGUILA N, et al. BLOCK-DBSCAN: Fast clustering for large scale data[J]. Pattern recognition, 2021, 109: 107624.
[7] CHU Zhenyue, WANG Weifeng, LI Bangzhun, et al. An operation health status monitoring algorithm of special transformers based on BIRCH and Gaussian cloud methods[J]. Energy reports, 2021, 7: 253-260.
[8] 邵佳, 金百锁. 基于层次聚类的图像分割算法[J]. 计算机应用, 2022, 42(S2): 211-216.
SHAO Jia, JIN Baisuo. Image segmentation algorithm based on hierarchical clustering[J]. Journal of computer applications, 2022, 42(S2): 211-216.
[9] ZHANG Tian, RAMAKRISHNAN R, LIVNY M. BIRCH[J]. ACM SIGMOD record, 1996, 25(2): 103-114.
[10] GUHA S, RASTOGI R, SHIM K. Cure: an efficient clustering algorithm for large databases[J]. Information systems, 2001, 26(1): 35-58.
[11] KARYPIS G, HAN E H, KUMAR V. Chameleon: hierarchical clustering using dynamic modeling[J]. Computer, 1999, 32(8): 68-75.
[12] KARYPIS G, AGGARWAL R, KUMAR V, et al. Multilevel hypergraph partitioning: application in vlsi domain[C]//Proceedings of the 34th Design Automation Conference. Anaheim: IEEE, 1997: 526-529.
[13] 吕端端. 基于最近邻思想的Chameleon聚类算法研究[D]. 西安: 西安理工大学, 2020: 31-49.
LYU Duanduan. Research on Chameleon clustering algorithm based on nearest neighbor idea[D]. Xi’an: Xi’an University of Technology, 2020: 31-49.
[14] CHENG Dongdong, ZHU Qingsheng, HUANG Jinlong, et al. A hierarchical clustering algorithm based on noise removal[J]. International journal of machine learning and cybernetics, 2019, 10(7): 1591-1602.
[15] ARTHUR D, VASSILVITSKII S. k-means++: The advantages of careful seeding[C]//Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia: Society for Industrial and Applied Mathematics, 2007: 1027-1035.
[16] CHENG Dongdong, HUANG Jinlong, ZHANG Sulan, et al. K-means clustering with natural density peaks for discovering arbitrary-shaped clusters[J]. IEEE transactions on neural networks and learning systems, 2024, 35(8): 11077-11090.
[17] TZORTZIS G, LIKAS A. The MinMax k-means clustering algorithm[J]. Pattern recognition, 2014, 47(7): 2505-2516.
[18] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. Portland: AAAI Press, 1996: 226-231.
[19] BRYANT A, CIOS K. RNN-DBSCAN: a density-based clustering algorithm using reverse nearest neighbor density estimates[J]. IEEE transactions on knowledge and data engineering, 2018, 30(6): 1109-1121.
[20] GHOLIZADEH N, SAADATFAR H, HANAFI N. K-DBSCAN: an improved DBSCAN algorithm for big data[J]. The journal of supercomputing, 2021, 77(6): 6214-6235.
[21] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[22] TONG Wuning, LIU Sen, GAO Xiaozhi. A density-peak-based clustering algorithm of automatically determining the number of clusters[J]. Neurocomputing, 2021, 458: 655-666.
[23] CHEN Di, DU Tao, ZHOU Jin, et al. A domain density peak clustering algorithm based on natural neighbor[J]. Intelligent data analysis, 27(2): 443-462.
[24] 冯骥. 自然邻居思想概念及其在数据挖掘领域的应用[D]. 重庆: 重庆大学, 2016: 31-89.
FENG Ji. Concept of natural neighbor and its application in data mining[D]. Chongqing: Chongqing University, 2016: 31-89.
[25] 张清华, 周靖鹏, 代永杨, 等. 基于代表点与K近邻的密度峰值聚类算法[J]. 软件学报, 2023, 34(12): 5629-5648.
ZHANG Qinghua, ZHOU Jingpeng, DAI Yongyang, et al. Density peaks clustering algorithm based on representative points and K-nearest neighbors[J]. Journal of software, 2023, 34(12): 5629-5648.
[26] 位雅, 张正军, 何凯琳, 等. 基于相对密度的密度峰值聚类算法[J]. 计算机工程, 2023, 49(6): 53-61.
WEI Ya, ZHANG Zhengjun, HE Kailin, et al. Density peak clustering algorithm based on relative density[J]. Computer engineering, 2023, 49(6): 53-61.
[27] CHENG Dongdong, LI Ya, XIA Shuyin, et al. A fast granular-ball-based density peaks clustering algorithm for large-scale data[J]. IEEE transactions on neural networks and learning systems, 2024, 35(12): 17202-17215.
[28] LIU Rui, WANG Hong, YU Xiaomei. Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J]. Information sciences, 2018, 450: 200-226.
[29] CHENG Dongdong, ZHU Qingsheng, HUANG Jinlong, et al. A novel cluster validity index based on local cores[J]. IEEE transactions on neural networks and learning systems, 2019, 30(4): 985-999.
[30] NGUYEN X, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance[J]. Properties, normalization and correction for chance, 2009, 10: 2837-2854.
[31] 冯骥, 冉瑞生, 魏延. 基于自然邻居邻域图的无参数离群检测算法[J]. 智能系统学报, 2019, 14(5): 998-1006.
FENG Ji, RAN Ruisheng, WEI Yan. A parameter-free outlier detection algorithm based on natural neighborhood graph[J]. CAAI transactions on intelligent systems, 2019, 14(5): 998-1006.
[32] 周欢欢, 张征, 张琦. 结合共享近邻和共享逆近邻的密度峰聚类[J]. 西华师范大学学报(自然科学版), 2022, 43(1): 108-115.
ZHOU Huanhuan, ZHANG Zheng, ZHANG Qi. Density peak clustering combining shared nearest neighbors and shared inverse neighbors[J]. Journal of China west normal university (natural sciences), 2022, 43(1): 108-115.
[33] JARVIS R A, PATRICK E A. Clustering using a similarity measure based on shared near neighbors[J]. IEEE transactions on computers, 1973, C-22(11): 1025-1034.
[34] ZHANG Jinghui, YANG Lijun, ZHANG Yong, et al. Non-parameter clustering algorithm based on saturated neighborhood graph[J]. Applied soft computing, 2022, 130: 109647.
[35] HUANG Jinlong, ZHU Qingsheng, YANG Lijun, et al. A novel outlier cluster detection algorithm without top-n parameter[J]. Knowledge-based systems, 2017, 121: 32-40.
[36] ZHANG Yuru, DING Shifei, WANG Yanru, et al. Chameleon algorithm based on improved natural neighbor graph generating sub-clusters[J]. Applied intelligence, 2021, 51(11): 8399-8415.
[37] 张辉. 密度峰值点快速搜索聚类算法的研究与改进[D]. 青岛: 山东科技大学, 2019: 32-37.
ZHANG Hui. Research and improvement of fast search clustering algorithm for density peak points[D]. Qingdao: Shandong University of Science and Technology, 2019: 32-37.
[38] 吕莉, 陈威, 肖人彬, 等. 面向密度分布不均数据的加权逆近邻密度峰值聚类算法[J]. 智能系统学报, 2024, 19(1): 165-175.
LYU Li, CHEN Wei, XIAO Renbin, et al. Density peak clustering algorithm based on weighted reverse nearest neighbor for uneven density datasets[J]. CAAI transactions on intelligent systems, 2024, 19(1): 165-175.
[39] 陈磊, 吴润秀, 李沛武, 等. 加权K近邻和多簇合并的密度峰值聚类算法[J]. 计算机科学与探索, 2022, 16(9): 2163-2176.
CHEN Lei, WU Runxiu, LI Peiwu, et al. Weighted K-nearest neighbors and multi-cluster merge density peaks clustering algorithm[J]. Journal of frontiers of computer science and technology, 2022, 16(9): 2163-2176.
[40] DING Shifei, DU Wei, XU Xiao, et al. An improved density peaks clustering algorithm based on natural neighbor with a merging strategy[J]. Information sciences, 2023, 624: 252-276.
[41] CHENG Bifang, BUNDROCK T, WILLIAMS D J. AAC oriental 200 oriental mustard[J]. Canadian journal of plant science, 2018, 98(4): 985-987.
[42] 王赢己. 基于自然邻居的密度峰值聚类算法研究[D]. 哈尔滨: 哈尔滨工程大学, 2021: 50-55.
WANG Yingji. Research on density peak clustering algorithm based on natural neighbors[D]. Harbin: Harbin Engineering University, 2021: 50-55.
[43] 赵嘉, 马清, 肖人彬, 等. 面向流形数据的共享近邻密度峰值聚类算法[J]. 智能系统学报, 2023, 18(4): 719-730.
ZHAO Jia, MA Qing, XIAO Renbin, et al. Density peaks clustering based on shared nearest neighbor for manifold datasets[J]. CAAI transactions on intelligent systems, 2023, 18(4): 719-730.
[44] 谢文波. 基于互惠最近邻的层次聚类算法及其应用研究[D]. 成都: 电子科技大学, 2021: 36-57.
XIE Wenbo. Research on hierarchical clustering algorithm based on reciprocal nearest neighbors and its application[D]. Chengdu: University of Electronic Science and Technology of China, 2021: 36-57.
[45] 程东东. 基于局部核心点的聚类算法与度量研究[D]. 重庆: 重庆大学, 2018: 38-74.
CHENG Dongdong. Research on clustering algorithm and measurement based on local core points[D]. Chongqing: Chongqing University, 2018: 38-74.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems