[1]ZHU Chaojie,YAN Yuming,CHU Baochang,et al.Aspect-level multimodal sentiment analysis via object-attention[J].CAAI Transactions on Intelligent Systems,2024,19(6):1562-1572.[doi:10.11992/tis.202404009]
Copy

Aspect-level multimodal sentiment analysis via object-attention

References:
[1] 中国互联网络信息中心. 中国互联网络发展状况统计报告[J]. 国家图书馆学刊, 2023, 32(2): 39.
[2] XU Nan, MAO Wenji, CHEN Guandan. Multi-interactive memory network for aspect based multimodal sentiment analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Hawaii: AAAI Press, 2019: 371-378.
[3] ZHANG Zhe, WANG Zhu, LI Xiaona, et al. ModalNet: an aspect-level sentiment classification model by exploring multimodal data with fusion discriminant attentional network[J]. World wide web, 2021, 24(6): 1957-1974.
[4] KHAN Z, FU Yun. Exploiting BERT for multimodal target sentiment classification through input space translation[C]//Proceedings of the 29th ACM International Conference on Multimedia. Virtual Event China: ACM, 2021: 3034-3042.
[5] 王伟贤, 吴俊. 基于情感词典与语义规则集的微博文本情感分析[J]. 计算机科学与应用, 2023, 13(4): 754-763.
WANG Weixian, WU Jun. Sentiment analysis of microblog text based on sentiment dictionary and semantic rule set[J]. Computer science and application, 2023, 13(4): 754-763.
[6] SHANG Yongmin, ZHAO Yuqin. Sentiment analysis and implementation of online reviews based on machine learning[J]. Journal of Dali University, 2021, 6(12): 80-86.
[7] HUANG Jiaxin, MENG Yu, GUO Fang, et al. Weakly-supervised aspect-based sentiment analysis via joint aspect-sentiment topic embedding[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2020.
[8] KIRITCHENKO S, ZHU X, CHERRY C, et al. Detecting aspects and sentiment in customer reviews[C]//8th International Workshop on Semantic Evaluation. [S.l.]: [s.n.], 2014, 437-442.
[9] 王婷, 杨文忠. 文本情感分析方法研究综述[J]. 计算机工程与应用, 2021, 57(12): 11-24.
WANG Ting, YANG Wenzhong. Review of text sentiment analysis methods[J]. Computer engineering and applications, 2021, 57(12): 11-24.
[10] LONDHE A, RAO P V R D P. Aspect based sentiment analysis–an incremental model learning approach using LSTM-RNN[M]//Communications in Computer and Information Science. Cham: Springer International Publishing, 2021: 677-689.
[11] XUE Wei, LI Tao. Aspect based sentiment analysis with gated convolutional networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2018: 2514-2523.
[12] 张文轩, 殷雁君, 智敏. 用于方面级情感分析的情感增强双图卷积网络[J]. 计算机科学与探索, 2024, 18(1): 217-230.
ZHANG Wenxuan, YIN Yanjun, ZHI Min. Affection enhanced dual graph convolution network for aspect based sentiment analysis[J]. Journal of frontiers of computer science and technology, 2024, 18(1): 217-230.
[13] WANG Bailin, LU Wei. Learning latent opinions for aspect-level sentiment classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans: AAAI Press, 2018: 5537-5544.
[14] 曾锋, 曾碧卿, 韩旭丽, 等. 基于双层注意力循环神经网络的方面级情感分析[J]. 中文信息学报, 2019, 33(6): 108-115.
ZENG Feng, ZENG Biqing, HAN Xuli, et al. Double attention neural network for aspect-based sentiment analysis[J]. Journal of Chinese information processing, 2019, 33(6): 108-115.
[15] 谢珺, 王雨竹, 陈波, 等. 基于双指导注意力网络的属性情感分析模型[J]. 计算机研究与发展, 2022, 59(12): 2831-2843.
XIE Jun, WANG Yuzhu, CHEN Bo, et al. Aspect-based sentiment analysis model with Bi-guide attention network[J]. Journal of computer research and development, 2022, 59(12): 2831-2843.
[16] 李丽双, 周安桥, 刘阳, 等. 基于动态注意力GRU的特定目标情感分类[J]. 中国科学(信息科学), 2019, 49(8): 1019-1030.
LI Lishuang, ZHOU Anqiao, LIU Yang, et al. Aspect-based sentiment analysis based on dynamic attention GRU[J]. Scientia sinica (informationis), 2019, 49(8): 1019-1030.
[17] WU Zhengxuan, ONG D C. Context-guided BERT for targeted aspect-based sentiment analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI Press, 2021: 14094-14102.
[18] 曾凡旭, 李旭, 姚春龙, 等. 基于BERT的端到端方面级情感分析[J]. 大连工业大学学报, 2022, 41(3): 228-234.
ZENG Fanxu, LI Xu, YAO Chunlong, et al. End-to-end aspect-level sentiment analysis based on BERT[J]. Journal of Dalian Polytechnic University, 2022, 41(3): 228-234.
[19] GU Donghong, WANG Jiaqian, CAI Shaohua, et al. Targeted aspect-based multimodal sentiment analysis: an attention capsule extraction and multi-head fusion network[J]. IEEE access, 2021, 9: 157329-157336.
[20] 范东旭, 过弋. 基于可信细粒度对齐的多模态方面级情感分析[J]. 计算机科学, 2023, 50(12): 246-254.
FAN Dongxu, GUO Yi. Aspect-based multimodal sentiment analysis based on trusted fine-grained alignment[J]. Computer science, 2023, 50(12): 246-254.
[21] ZHOU Jie, ZHAO Jiabao, HUANG J X, et al. MASAD: a large-scale dataset for multimodal aspect-based sentiment analysis[J]. Neurocomputing, 2021, 455: 47-58.
[22] YU Jianfei, JIANG Jing. Adapting BERT for target-oriented multimodal sentiment classification[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao: International Joint Conferences on Artificial Intelligence Organization, 2019: 5408-5414.
[23] LING Yan, YU Jianfei, XIA Rui. Vision-language pre-training for multimodal aspect-based sentiment analysis[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics, 2022: 2149-2159.
[24] DEVLIN J, CHANG Mingwei, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[EB/OL]. (2018-11-11)[2021-01-01]. http://arxiv.org/abs/1810.04805.
[25] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[26] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[27] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2017-06-12)[2021-01-01]. http://arxiv.org/abs/1706.03762.
[28] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-12-11)[2021-01-01]. http://arxiv.org/abs/1412.3555.
[29] WANG Xin, CHEN Yudong, ZHU Wenwu. A survey on curriculum learning[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(9): 4555-4576.
[30] ZHANG Qi, FU Jinlan, LIU Xiaoyu, et al. Adaptive co-attention network for named entity recognition in tweets[J]. Proceedings of the AAAI conference on artificial intelligence. New Orleans: AAAI Press, 2018: 5674-5681.
[31] NGUYEN D Q, VU T, TUAN NGUYEN A. BERTweet: a pre-trained language model for English Tweets[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations. Stroudsburg: Association for Computational Linguistics, 2020: 9-14.
Similar References:

Memo

-

Last Update: 2024-11-05

Copyright © CAAI Transactions on Intelligent Systems