[1]JIANG Shijie,XIA Xiushan,ZHAI Wei,et al.ODE diffusion model for multiclass anomaly detection and localization[J].CAAI Transactions on Intelligent Systems,2025,20(2):376-388.[doi:10.11992/tis.202402022]
Copy

ODE diffusion model for multiclass anomaly detection and localization

References:
[1] BERGMANN P, FAUSER M, SATTLEGGER D, et al. MVTec AD—a comprehensive real-world dataset for unsupervised anomaly detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 9584-9592.
[2] 吕承侃, 沈飞, 张正涛, 等. 图像异常检测研究现状综述[J]. 自动化学报, 2022, 48(6): 1402-1428.
LYU Chengkan, SHEN Fei, ZHANG Zhengtao, et al. Review of image anomaly detection[J]. Acta automatica sinica, 2022, 48(6): 1402-1428.
[3] 陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5): 1017-1034.
TAO Xian, HOU Wei, XU De. A survey of surface defect detection methods based on deep learning[J]. Acta automatica sinica, 2021, 47(5): 1017-1034.
[4] 伍麟, 郝鸿宇, 宋友. 基于计算机视觉的工业金属表面缺陷检测综述[J]. 自动化学报, 2024, 50(7): 1261-1283.
WU Lin, HAO Hongyu, SONG You. A review of metal surface defect detection based on computer vision[J]. Acta automatica sinica, 2024, 50(7): 1261-1283.
[5] 黄健, 郑春厚, 章军, 等. 基于小样本度量迁移学习的表面缺陷检测[J]. 模式识别与人工智能, 2021, 34(5): 407-414.
HUANG Jian, ZHENG Chunhou, ZHANG Jun, et al. Few-shot metric transfer learning network for surface defect detection[J]. Pattern recognition and artificial intelligence, 2021, 34(5): 407-414.
[6] 邢鹏, 蒋鑫, 潘永华, 等. 基于特征约束蒸馏学习的视觉异常检测[J]. 软件学报, 2023, 34(9): 4378-4391.
XING Peng, JIANG Xin, PAN Yonghua, et al. Feature constrained restricted distillation learning for visual anomaly detection[J]. Journal of software, 2023, 34(9): 4378-4391.
[7] 王延春秋, 葛泉波, 刘华平. 石板材表面缺陷检测的无监督学习方法[J]. 智能系统学报, 2023, 18(6): 1344-1351.
WANG Yanchunqiu, GE Quanbo, LIU Huaping. Unsupervised learning method for surface defect detection of slate materials[J]. CAAI transactions on intelligent systems, 2023, 18(6): 1344-1351.
[8] 孙博言, 王洪元, 刘乾, 等. 基于多尺度和注意力机制的混合监督金属表面缺陷检测[J]. 智能系统学报, 2023, 18(4): 886-893.
SUN Boyan, WANG Hongyuan, LIU Qian, et al. Hybrid supervised metal surface defect detection based on multi-scale and attention[J]. CAAI transactions on intelligent systems, 2023, 18(4): 886-893.
[9] FERNANDO T, GAMMULLE H, DENMAN S, et al. Deep learning for medical anomaly detection—a survey[J]. ACM computing surveys, 2022, 54(7): 1-37.
[10] 胡显耀, 靳聪明. 基于扩散常微分方程的医学图像异常检测[J]. 浙江理工大学学报(自然科学版), 2024, 49(6): 851-860.
HU Xianyao, JIN Congming. Medical image anomaly detection based on diffusion ordinary differential equations[J]. Journal of Zhejiang Sci-Tech University (natural sciences edition), 2024, 49(6): 851-860.
[11] NAYAK R, PATI U C, DAS S K. A comprehensive review on deep learning-based methods for video anomaly detection[J]. Image and vision computing, 2021, 106: 104078.
[12] 胡正平, 赵梦瑶, 辛丙一. 结合全局与局部视频表示的视频异常检测算法[J]. 模式识别与人工智能, 2020, 33(2): 133-140.
HU Zhengping, ZHAO Mengyao, XIN Bingyi. Video anomaly detection algorithm combining global and local video representation[J]. Pattern recognition and artificial intelligence, 2020, 33(2): 133-140.
[13] 黄超, 胡志军, 徐勇, 等. 基于视觉的车辆异常行为检测综述[J]. 模式识别与人工智能, 2020, 33(3): 234-248.
HUANG Chao, HU Zhijun, XU Yong, et al. Vision-based abnormal vehicle behavior detection: a survey[J]. Pattern recognition and artificial intelligence, 2020, 33(3): 234-248.
[14] ZAVRTANIK V, KRISTAN M, SKO?AJ D. DR?M–A discriminatively trained reconstruction embedding for surface anomaly detection[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 8310-8319.
[15] GUDOVSKIY D, ISHIZAKA S, KOZUKA K. CFLOW-AD: real-time unsupervised anomaly detection with localization via conditional normalizing flows[C]//2022 IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2022: 1819-1828.
[16] ROTH K, PEMULA L, ZEPEDA J, et al. Towards total recall in industrial anomaly detection[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 14298-14308.
[17] YOU Zhiyuan, CUI Lei, SHEN Yujun, et al. A unified model for multi-class anomaly detection[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022: 4571-4584.
[18] ZHAO Ying. OmniAL: a unified CNN framework for unsupervised anomaly localization[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 3924-3933.
[19] LU Ruiying, WU Yujie, TIAN Long, et al. Hierarchical vector quantized transformer for multi-class unsupervised anomaly detection[C]//Proceedings of the 37th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2023: 8487-8500.
[20] LU Fanbin, YAO Xufeng, FU C W, et al. Removing anomalies as noises for industrial defect localization[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 16120-16129.
[21] HE Haoyang, ZHANG Jiangning, CHEN Hongxu, et al. DiAD: a diffusion-based framework for multi-class anomaly detection[EB/OL]. (2023-12-11)[2024-02-22]. https://arxiv.org/abs/2312.06607.
[22] WANG Guodong, HAN Shumin, DING Errui, et al. Student-teacher feature pyramid matching for anomaly detection[EB/OL]. (2021-03-07)[2024-02-22]. https://arxiv.org/abs/2103.04257.
[23] DENG Hanqiu, LI Xingyu. Anomaly detection via reverse distillation from one-class embedding[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 9727-9736.
[24] TIEN T D, NGUYEN A T, TRAN N H, et al. Revisiting reverse distillation for anomaly detection[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 24511-24520.
[25] RUDOLPH M, WANDT B, ROSENHAHN B. Same same but DifferNet: semi-supervised defect detection with normalizing flows[C]//2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021: 1906-1915.
[26] LEI Jiarui, HU Xiaobo, WANG Yue, et al. PyramidFlow: high-resolution defect contrastive localization using pyramid normalizing flow[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 14143-14152.
[27] 毛国君, 吴星臻, 邢树礼. 基于多尺度流模型的视觉异常检测研究[J]. 自动化学报, 2024, 50(3): 640-648.
MAO Guojun, WU Xingzhen, XING Shuli. Research on visual anomaly detection based on multi-scale normalizing flow[J]. Acta automatica sinica, 2024, 50(3): 640-648.
[28] GONG Dong, LIU Lingqiao, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 1705-1714.
[29] AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly: semi-supervised anomaly detection via adversarial training[C]//14th Asian Conference on Computer Vision. Perth: Springer International Publishing, 2019: 622-637.
[30] PERERA P, NALLAPATI R, XIANG Bing. OCGAN: one-class novelty detection using GANs with constrained latent representations[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 2893-2901.
[31] WYATT J, LEACH A, SCHMON S M, et al. AnoDDPM: anomaly detection with denoising diffusion probabilistic models using simplex noise[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 649-655.
[32] ZHANG Xinyi, LI Naiqi, LI Jiawei, et al. Unsupervised surface anomaly detection with diffusion probabilistic model[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 6759-6768.
[33] MOUSAKHAN A, BROX T, TAYYUB J. Anomaly detection with conditioned denoising diffusion models[EB/OL]. (2023-05-25)[2024-02-22]. https://arxiv.org/abs/2305.15956.
[34] DHARIWAL P, NICHOL A. Diffusion models beat gans on image synthesis[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2021, 34: 8780-8794.
[35] SONG Jiaming, MENG Chenlin, Ermon S. Denoising diffusion implicit models[C]//International Conference on Learning Representations. Vienna: OpenReview.net, 2021: 1-20.
[36] NICHOL A, DHARIWAL P. Improved denoising diffusion probabilistic models[C]//International Conference on Machine Learning. Virtual: PMLR, 2021: 8162-8171.
[37] LIU Xingchao, GONG Chengyue, LIU Qiang. Flow straight and fast: learning to generate and transfer data with rectified flow[C]//International Conference on Learning Representations. Kigali: OpenReview. net, 2023: 1-33.
[38] LIU Xingchao, ZHANG Xiwen, MA Jianzhu, et al. InstaFlow: one step is enough for high-quality diffusion-based text-to-image generation[EB/OL]. (2023-09-12)[2024-02-22]. https://arxiv.org/abs/2309.06380.
[39] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention. Munich: Springer International Publishing, 2015: 234-241.
[40] SOHL-DICKSTEIN J, WEISS E A, MAHESWARANATHAN N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]//International Conference on Machine Learning. Lille: PMLR, 2015: 2256-2265.
[41] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. Virtual: Curran Associates Inc., 2020, 33: 6840-6851.
[42] ROMBACH R, BLATTMANN A, LORENZ D, et al. High-resolution image synthesis with latent diffusion models[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 10674-10685.
[43] ZHANG Lyumin, RAO Anyi, AGRAWALA M. Adding conditional control to text-to-image diffusion models[C]//2023 IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2023: 3813-3824.
[44] LU Cheng, ZHOU Yuhao, BAO Fan, et al. Dpm-solver: a fast ode solver for diffusion probabilistic model sampling in around 10 steps[C]//Proceedings of the 36th International Conference on Neural Information Processing Systems. New Orleans: Curran Associates Inc., 2022, 35: 5775-5787.
[45] ZHOU Zhenyu, CHEN Defang, WANG Can, et al. Fast ODE-based sampling for diffusion models in around 5 steps[EB/OL]. (2023-11-30)[2024-02-22]. https://arxiv.org/abs/2312.00094.
[46] SONG Yang, DHARIWAL P, CHEN M, et al. Consistency models[EB/OL]. (2023-03-02)[2024-02-22]. https://arxiv.org/abs/2303.01469.
[47] YIN Tianwei, GHARBI M, ZHANG R, et al. One-step diffusion with distribution matching distillation[EB/OL]. (2023-11-30)[2024-02-22]. https://arxiv.org/abs/2311.18828.
[48] SONG Yang, SOHL-DICKSTEIN J, KINGMA D P, et al. Score-based generative modeling through stochastic differential equations[C]//International Conference on Learning Representations. Vienna: OpenReview.net, 2021: 1-36.
[49] CIMPOI M, MAJI S, KOKKINOS I, et al. Describing textures in the wild[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 3606-3613.
[50] ZHANG R, ISOLA P, EFROS A A, et al. The unreasonable effectiveness of deep features as a perceptual metric[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 586-595.
[51] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[52] ZAGORUYKO S, KOMODAKIS N. Wide residual networks[EB/OL]. (2016-05-03)[2024-02-22]. https://arxiv.org/abs/1605.07146.
[53] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations. San Diego: OpenReview.net, 2015: 1–14.
[54] TAN Mingxing, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning. Los Angeles: PMLR, 2019: 6105–6114.
Similar References:

Memo

-

Last Update: 2025-03-05

Copyright © CAAI Transactions on Intelligent Systems