[1]QU Haicheng,XU Bo.Multimodal sentiment analysis based on adaptive graph learning weight[J].CAAI Transactions on Intelligent Systems,2025,20(2):516-528.[doi:10.11992/tis.202401001]
Copy

Multimodal sentiment analysis based on adaptive graph learning weight

References:
[1] PE?A D, AGUILERA A, DONGO I, et al. A framework to evaluate fusion methods for multimodal emotion recognition[J]. IEEE access, 2023, 11: 10218-10237.
[2] ZHANG Junling, WU Xuemei, HUANG Changqin. AdaMoW: multimodal sentiment analysis based on adaptive modality-specific weight fusion network[J]. IEEE access, 2023, 11: 48410-48420.
[3] 张亚洲, 戎璐, 宋大为, 等. 多模态情感分析研究综述[J]. 模式识别与人工智能, 2020, 33(5): 426-438.
ZHANG Yazhou, RONG Lu, SONG Dawei, et al. A survey on multimodal sentiment analysis[J]. Pattern recognition and artificial intelligence, 2020, 33(5): 426-438.
[4] GANDHI A, ADHVARYU K, PORIA S, et al. Multimodal sentiment analysis: a systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions[J]. Information fusion, 2023, 91: 424-444.
[5] MAI Sijie, HU Haifeng, XING Songlong. Modality to modality translation: an adversarial representation learning and graph fusion network for multimodal fusion[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 164-172.
[6] ZADEH A, LIANG P P, PORIA S, et al. Multi-attention recurrent network for human communication comprehension[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 5642-5649.
[7] HAN Wei, CHEN Hui, GELBUKH A, et al. Bi-bimodal modality fusion for correlation-controlled multimodal sentiment analysis[C]//Proceedings of the 2021 International Conference on Multimodal Interaction. Montréal: ACM, 2021: 6-15.
[8] 刘颖, 王哲, 房杰, 等. 基于图文融合的多模态舆情分析[J]. 计算机科学与探索, 2022, 16(6): 1260-1278.
LIU Ying, WANG Zhe, FANG Jie, et al. Multi-modal public opinion analysis based on image and text fusion[J]. Journal of frontiers of computer science and technology, 2022, 16(6): 1260-1278.
[9] HUANG Changqin, ZHANG Junling, WU Xuemei, et al. TeFNA: text-centered fusion network with crossmodal attention for multimodal sentiment analysis[J]. Knowledge-based systems, 2023, 269: 110502.
[10] SUN Hao, LIU Jiaqing, CHEN Y W, et al. Modality-invariant temporal representation learning for multimodal sentiment classification[J]. Information fusion, 2023, 91: 504-514.
[11] MAI Sijie, ZENG Ying, HU Haifeng. Multimodal information bottleneck: learning minimal sufficient unimodal and multimodal representations[J]. IEEE transactions on multimedia, 2023, 25: 4121-4134.
[12] ZADEH A, CHEN Minghai, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[EB/OL]. (2017-07-23)[2024-01-02]. https://arxiv.org/abs/1707.07250.
[13] TSAI Y H H, BAI Shaojie, LIANG P P, et al. Multimodal transformer for unaligned multimodal language sequences[C]//Proceedings of the Conference Association for Computational Linguistics Meeting. Florence: ACL, 2019: 6558-6569.
[14] SU Guixin, HE Junyi, LI Xia, et al. NFCMF: noise filtering and CrossModal fusion for multimodal sentiment analysis[C]//2021 International Conference on Asian Language Processing. Singapore: IEEE, 2021: 316-321.
[15] YANG Shuo, XU Zhaopan, WANG Kai, et al. BiCro: noisy correspondence rectification for multi-modality data via bi-directional cross-modal similarity consistency[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 19883-19892.
[16] 孙杰, 车文刚, 高盛祥. 面向多模态情感分析的多通道时序卷积融合[J]. 计算机科学与探索, 2024, 18(11): 3041-3050.
SUN Jie, CHE Wengang, GAO Shengxiang. Multi-channel temporal convolution fusion for multimodal sentiment analysis[J]. Journal of frontiers of computer science and technology, 2024, 18(11): 3041-3050.
[17] 鲍小异, 姜晓彤, 王中卿, 等. 基于跨语言图神经网络模型的属性级情感分类[J]. 软件学报, 2023, 34(2): 676-689.
BAO Xiaoyi, JIANG Xiaotong, WANG Zhongqing, et al. Cross-lingual aspect-level sentiment classification with graph neural network[J]. Journal of software, 2023, 34(2): 676-689.
[18] JANGRA A, MUKHERJEE S, JATOWT A, et al. A survey on multi-modal summarization[J]. ACM computing surveys, 2023, 55(13s): 1-36.
[19] MAJUMDER N, HAZARIKA D, GELBUKH A, et al. Multimodal sentiment analysis using hierarchical fusion with context modeling[J]. Knowledge-based systems, 2018, 161: 124-133.
[20] XU Nan, MAO Wenji. MultiSentiNet: a deep semantic network for multimodal sentiment analysis[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 2399-2402.
[21] AKHTAR M S, CHAUHAN D S, GHOSAL D, et al. Multi-task learning for multi-modal emotion recognition and sentiment analysis[EB/OL]. (2019-05-14) [2024-01-02]. https://arxiv.org/abs/1905.05812.
[22] HAZARIKA D, ZIMMERMANN R, PORIA S. MISA: modality-invariant and-specific representations for multimodal sentiment analysis[C]//Proceedings of the 28th ACM International Conference on Multimedia. Seattle: ACM, 2020: 1122-1131.
[23] YU Wenmeng, XU Hua, YUAN Ziqi, et al. Learning modality-specific representations with self-supervised multi-task learning for multimodal sentiment analysis[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2021: 10790-10797.
[24] ZUO Haolin, LIU Rui, ZHAO Jinming, et al. Exploiting modality-invariant feature for robust multimodal emotion recognition with missing modalities[C]//2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Rhodes Island: IEEE, 2023: 1-5.
[25] LIU A H, JIN S, LAI C I J, et al. Cross-modal discrete representation learning[EB/OL]. (2021-06-10) [2024-01-02]. https://arxiv.org/abs/2106.05438.
[26] 胡文彬, 陈龙, 黄贤波, 等. 融合交叉注意力的突发事件多模态中文反讽识别模型[J]. 智能系统学报, 2024, 19(2): 392-400.
HU Wenbin, CHEN Long, HUANG Xianbo, et al. A multimodal Chinese sarcasm detection model for emergencies based on cross attention[J]. CAAI transactions on intelligent systems, 2024, 19(2): 392-400.
[27] 李梦云, 张景, 张换香, 等. 基于跨模态语义信息增强的多模态情感分析[J]. 计算机科学与探索, 2024, 18(9): 2476-2486.
LI Mengyun, ZHANG Jing, ZHANG Huanxiang, et al. Multimodal sentiment analysis based on cross-modal semantic information enhancement[J]. Journal of frontiers of computer science and technology, 2024, 18(9): 2476-2486.
[28] 包广斌, 李港乐, 王国雄. 面向多模态情感分析的双模态交互注意力[J]. 计算机科学与探索, 2022, 16(4): 909-916.
BAO Guangbin, LI Gangle, WANG Guoxiong. Bimodal interactive attention for multimodal sentiment analysis[J]. Journal of frontiers of computer science and technology, 2022, 16(4): 909-916.
[29] TANG Jiajia, LIU Dongjun, JIN Xuanyu, et al. BAFN: bi-direction attention based fusion network for multimodal sentiment analysis[J]. IEEE transactions on circuits and systems for video technology, 2023, 33(4): 1966-1978.
[30] LYU Fengmao, CHEN Xiang, HUANG Yanyong, et al. Progressive modality reinforcement for human multimodal emotion recognition from unaligned multimodal sequences[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 2554-2562.
[31] RAHMAN W, HASAN M K, LEE Sangwu, et al. Integrating multimodal information in large pretrained transformers[C]//Proceedings of the conference. Association for Computational Linguistics. Online: ACL, 2020: 2359-2369.
[32] SANGWAN S, CHAUHAN D S, AKHTAR M S, et al. Multi-task gated contextual cross-modal attention framework for sentiment and emotion analysis[C]//Neural Information Processing. Sydney: Springer, 2019: 662-669.
[33] HUANG Yanping, PENG Hong, LIU Qian, et al. Attention-enabled gated spiking neural P model for aspect-level sentiment classification[J]. Neural networks, 2023, 157: 437-443.
[34] TISHBY N, PEREIRA F C, BIALEK W. The information bottleneck method[EB/OL]. (2000-04-24) [2024-01-02]. https://arxiv.org/abs/physics/0004057.
[35] ALEMI A A, FISCHER I, DILLON J V, et al. Deep variational information bottleneck[EB/OL]. (2016-12-01) [2024-01-02]. https://arxiv.org/abs/1612.00410.
[36] ZADEH A, ZELLERS R, PINCUS E, et al. Multimodal sentiment intensity analysis in videos: facial gestures and verbal messages[J]. IEEE intelligent systems, 2016, 31(6): 82-88.
[37] BAGHER ZADEH A, LIANG P P, PORIA S, et al. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne: ACL, 2018: 2236-2246.
[38] LIU Zhun, SHEN Ying, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[EB/OL]. (2018-05-31) [2024-01-02]. https://arxiv.org/abs/1806.00064.
[39] HAN Wei, CHEN Hui, PORIA S. Improving multimodal fusion with hierarchical mutual information maximization for multimodal sentiment analysis[EB/OL]. (2021-09-01) [2024-01-02]. https://arxiv.org/abs/2109.00412.
[40] WANG Di, GUO Xutong, TIAN Yumin, et al. TETFN: a text enhanced transformer fusion network for multimodal sentiment analysis[J]. Pattern recognition, 2023, 136: 109259.
[41] LI Yong, WANG Yuanzhi, CUI Zhen. Decoupled multimodal distilling for emotion recognition[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 6631-6640.
Similar References:

Memo

-

Last Update: 2025-03-05

Copyright © CAAI Transactions on Intelligent Systems