[1]ZHANG Lifang,LI Xingsen.Research on intelligent methods for latent features mining of basic element[J].CAAI Transactions on Intelligent Systems,2025,20(2):457-464.[doi:10.11992/tis.202310039]
Copy

Research on intelligent methods for latent features mining of basic element

References:
[1] 杨春燕, 蔡文, 汤龙. 可拓学[M]. 北京: 科学出版社, 2024.
YANG Chunyan, CAI Wen, TANG Long. Extension[M]. Beijing: Science Press, 2024.
[2] 杨春燕. 可拓创新方法[M]. 北京: 科学出版社, 2018.
YANG Chunyan. Extension innovation method[M]. Beijing: Science Press, 2018.
[3] 蔡文, 杨春燕. 可拓学的基础理论与方法体系[J]. 科学通报, 2013, 58(13): 1190-1199.
CAI Wen, YANG Chunyan. Basic theory and methodology on extenics[J]. Chinese science bulletin, 2013, 58(13): 1190-1199.
[4] 杨春燕, 蔡文, 涂序彦. 可拓学的研究、应用与发展[J]. 系统科学与数学, 2016, 36(9): 1507-1512.
YANG Chunyan, CAI Wen, TU Xuyan. Research, application and development on extenics[J]. Journal of systems science and mathematical sciences, 2016, 36(9): 1507-1512.
[5] 杨春燕, 蔡文. 可拓学与矛盾问题智能化处理[J]. 科技导报, 2014, 32(36): 15-20.
YANG Chunyan, CAI Wen. Extenics and intelligent processing of contradictory problems[J]. Science & technology review, 2014, 32(36): 15-20.
[6] 杨春燕, 李兴森. 可拓创新方法及其应用研究进展[J]. 工业工程, 2012, 15(1): 131-137.
YANG Chunyan, LI Xingsen. Research progress in extension innovation method and its applications[J]. Industrial engineering journal, 2012, 15(1): 131-137.
[7] 李兴森, 洪振挺, 王昊, 等. 可拓学与知识管理交叉研究视角下的问题智能化处理[J]. 包装工程, 2021, 42(12): 51-58,10.
LI Xingsen, HONG Zhenting, WANG Hao, et al. Intelligent problem solving from the perspective of extenics and knowledge management[J]. Packaging engineering, 2021, 42(12): 51-58,10.
[8] 余志伟, 李兴森. 基元库构建模型及其应用研究[J]. 广东工业大学学报, 2015, 32(3): 5-9.
YU Zhiwei, LI Xingsen. Modeling of basic-element and its application[J]. Journal of Guangdong University of Technology, 2015, 32(3): 5-9.
[9] 李兴森, 李爱红, 施美. 大数据背景下的可拓智能创新[J]. 中国质量, 2018(09): 42-46.
LI Xingsen, LI Aihong, SHI Mei. Extension intelligent innovation in the context of big data[J]. China quality, 2018(09): 42-46.
[10] 蔡迪阳. 基于Python的网页信息爬取技术分析[J]. 科技资讯, 2023, 21(13): 31-34.
CAI Diyang. Analysis of web information crawling technology based on Python[J]. Science & technology information, 2023, 21(13): 31-34.
[11] 曾健荣, 张仰森, 郑佳, 等. 面向多数据源的网络爬虫实现技术及应用[J]. 计算机科学, 2019, 46(5): 304-309.
ZENG Jianrong, ZHANG Yangsen, ZHENG Jia, et al. Implementation technology and application of web crawler for multi-data sources[J]. Computer science, 2019, 46(5): 304-309.
[12] 赵海燕, 李欣歌, 陈庆奎, 等. 面向业务过程挖掘和分析的事件日志预处理技术[J]. 小型微型计算机系统, 2022, 43(1): 1-9.
ZHAO Haiyan, LI Xinge, CHEN Qingkui, et al. Event log preprocessing technology for business process mining and analysis[J]. Journal of Chinese computer systems, 2022, 43(1): 1-9.
[13] 李洪烈, 夏栋, 王倩. 基于回归模型的采集数据清洗技术[J]. 电光与控制, 2022, 29(4): 117-120.
LI Honglie, XIA Dong, WANG Qian. A sampled data cleaning technology based on regression model[J]. Electronics optics & control, 2022, 29(4): 117-120.
[14] ARAVIND PRAKASH M, INDRA GANDHI K, SRIRAM R, et al. An effective comparative analysis of data preprocessing techniques in network intrusion detection system using deep neural networks[M]//Advances in Parallel Computing. Amsterdam: IOS Press, 2021: 14-19.
[15] LI Xingsen, ZHANG H, ZHU Zhengxiang, et al. An intelligent transformation knowledge mining method based on extenics[J]. Journal of Internet technology, 2013, 14: 315-325.
[16] SHI Yong, ZHANG Lingling, TIAN Yingjie, et al. Foundations of intelligent knowledge management[M]//SpringerBriefs in Business. Berlin: Springer, 2015: 13-30.
[17] SHAH K, SHAH N, SAWANT V, et al. Practical data mining techniques and applications[M]. New York: Auerbach Publications, 2023.
[18] MANNING C, SURDEANU M, BAUER J, et al. The stanford CoreNLP natural language processing toolkit[C]//Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations. Baltimore: Association for Computational Linguistics, 2014: 55-60.
[19] 倪渊, 廖世豪, 张健. 基于Wobert与对抗学习的中文命名实体识别[J]. 计算机工程, 2024, 50(11): 119-129.
NI Yuan, LIAO Shihao, ZHANG Jian. Chinese named entity recognition based on wobert and adversarial learning[J]. Computer engineering, 2024, 50(11): 119-129.
[20] 结巴分词研发团队. “结巴”中文分词: 做最好的 Python 中文分词组件[EB/OL]. (2020-02-15)[2023-10-25]. https://github.com/fxsjy/jieba.
JieBa Participle R&D Team. "JieBa" Chinese segmentation: being the best Python Chinese segmentation component[EB/OL]. (2020-02-15)[2023-10-25]. https://github.com/fxsjy/jieba.
[21] 赵怡博, 蒋峰, 李培峰. 一种基于BERT的多级连贯性文本分割方法[J]. 计算机应用与软件, 2024, 41(10): 262-268,324.
ZHAO Yibo, JIANG Feng, LI Peifeng. A BERT-based hierarchical adjacent coherence text segmentation method[J]. Computer applications and software, 2024, 41(10): 262-268,324.
[22] 李景玉. 预训练语言模型探究[J]. 科技资讯, 2022, 20(19): 5-9,18.
LI Jingyu. On the pre training language models[J]. Science & technology information, 2022, 20(19): 5-9,18.
[23] 江怡, 董化文. 论人工智能与人类智能的双向互动[J]. 自然辩证法通讯, 2023, 45(11): 14-25.
JIANG Yi, DONG Huawen. On the bi-directional interaction of artificial intelligence and human intelligence[J]. Journal of dialectics of nature, 2023, 45(11): 14-25.
[24] 朱光辉, 王喜文. ChatGPT的运行模式、关键技术及未来图景[J]. 新疆师范大学学报(哲学社会科学版), 2023, 44(4): 113-122.
ZHU Guanghui, WANG Xiwen. ChatGPT: operation mode, key technology and future prospects[J]. Journal of Xinjiang Normal University (edition of philosophy and social sciences), 2023, 44(4): 113-122.
[25] 钱力, 刘熠, 张智雄, 等. ChatGPT的技术基础分析[J]. 数据分析与知识发现, 2023, 7(3): 6-15.
QIAN Li, LIU Yi, ZHANG Zhixiong, et al. An analysis on the basic technologies of ChatGPT[J]. Data analysis and knowledge discovery, 2023, 7(3): 6-15.
[26] 蔡国梁, 罗伟, 康丙欣. 可拓学与人工神经网络[J]. 天中学刊, 1998, 13(5): 9-12.
CAI Guoliang, LUO Wei, KANG Bingxin. Extensics and artificial neural network[J]. Jourmal of Tianzhong, 1998, 13(5): 9-12.
[27] 何斌, 张应利. 可拓学在人工智能中的应用初探[J]. 华南理工大学学报(自然科学版), 1999, 27(6): 88-92.
HE Bin, ZHANG Yingli. Primary research for extenics’ application in artificial intelligence[J]. Journal of South China University of Technology (natural science edition), 1999, 27(6): 88-92.
[28] 杨春燕, 蔡文. 可拓数据挖掘研究进展[J]. 数学的实践与认识, 2009, 39(4): 134-141.
YANG Chunyan, CAI Wen. Recent progress in extension data mining[J]. Mathematics in practice and theory, 2009, 39(4): 134-141.
[29] 李兴森, 石勇, 李爱华. 基于可拓集的企业数据挖掘应用方案初探[J]. 哈尔滨工业大学学报, 2006, 38(7): 1124-1128.
LI Xingsen, SHI Yong, LI Aihua. Study on enterprise data mining solution based on extension set[J]. Journal of Harbin Institute of Technology, 2006, 38(7): 1124-1128.
[30] 蔡文, 石勇. 可拓学的科学意义与未来发展[J]. 哈尔滨工业大学学报, 2006, 38(7): 1079-1086.
CAI Wen, SHI Yong. Extenics: its significance in science and prospects in application[J]. Journal of Harbin Institute of Technology, 2006, 38(7): 1079-1086.
[31] 李兴森, 许立波, 刘海涛, 等. 因素空间与可拓学的互补性分析及问题处理融合模型[J]. 智能系统学报, 2022, 17(5): 990-998.
LI Xingsen, XU Libo, LIU Haitao, et al. A complementary analysis of factor space and extenics and a fusion model for solving problems[J]. CAAI transactions on intelligent systems, 2022, 17(5): 990-998.
Similar References:

Memo

-

Last Update: 2025-03-05

Copyright © CAAI Transactions on Intelligent Systems