[1]ZHANG Jianyu,XIE Juanying.ObjectBoxG: object detection algorithm based on GC3 module[J].CAAI Transactions on Intelligent Systems,2024,19(6):1385-1394.[doi:10.11992/tis.202310025]
Copy

ObjectBoxG: object detection algorithm based on GC3 module

References:
[1] 张婷婷, 章坚武, 郭春生, 等. 基于深度学习的图像目标检测算法综述[J]. 电子学报, 2020, 36(7): 15.
ZHANG Tingting, ZHANG Jianwu, GUO Chunsheng, et al. Survey of object detection based on deep learning[J]. Acta electronica sinica, 2020, 36(7): 15.
[2] ZAIDI S S A, ANSARI M S, ASLAM A, et al. A survey of modern deep learning based object detection models[J]. Digital signal processing, 2022, 126: 103514.
[3] LIU Zhuang, MAO Hanzi, WU Chaoyuan, et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11966-11976.
[4] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 213-229.
[5] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[6] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2020-10-22) [2020-10-22]. http://arxiv.org/abs/2010.11929.
[7] HAN K, WANG Y, GUO J, et al. Vision Gnn: an image is worth graph of nodes[J]. Advances in neural information processing systems, 2022, 35: 8291-8303.
[8] TAN Mingxing, PANG Ruoming, LE Q V. EfficientDet: scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10778-10787.
[9] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(9): 1904-1916.
[10] FU Chengyang, LIU Wei, RANGA A, et al. DSSD: deconvolutional single shot detector[EB/OL]. (2017-01-23) [2020-10-22]. http://arxiv.org/abs/1701.06659.
[11] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 936-944.
[12] LIU Shu, QI Lu, QIN Haifang, et al. Path aggregation network for instance segmentation[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
[13] JIANG Yiqi, TAN Zhiyu, WANG Junyan, et al. Giraffedet: A heavy-neck paradigm for object detection[EB/OL]//(2022-02-09)[2022-12-12]. https://arxiv.org/abs/2202.04256.
[14] GHIASI G, LIN T Y, LE Q V. NAS-FPN: learning scalable feature pyramid architecture for object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7029-7038.
[15] XIE Juanying, LIU Ran. The study progress of object detection algorithms based on deep learning[J]. Journal of Shaanxi Normal University (natural science edition), 2019, 47(5): 1-9.
[16] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014: 580-587.
[17] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015: 1440-1448.
[18] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
[19] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 21-37.
[20] LI Zuoxin, YANG Lu, ZHOU Fuqiang. FSSD: feature fusion single shot multibox detector[EB/OL]. (2017-12-04) [2020-10-22]. http://arxiv.org/abs/1712.00960.
[21] LAW H, DENG Jia. CornerNet: detecting objects as paired keypoints[C]//European Conference on Computer Vision. Cham: Springer, 2018: 765-781.
[22] TIAN Zhi, SHEN Chunhua, CHEN Hao, et al. FCOS: fully convolutional one-stage object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9626-9635.
[23] ZAND M, ETEMAD A, GREENSPAN M. ObjectBox: from centers to boxes for anchor-free object detection[C]//AVIDAN S, BROSTOW G, CISSé M, et al. European Conference on Computer Vision. Cham: Springer, 2022: 390-406.
[24] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International journal of computer vision, 2010, 88(2): 303-338.
[25] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2014: 740-755.
[26] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. (2013-12-21) [2021-01-01]. http://arxiv.org/abs/1312.6203.
[27] MICHELI A. Neural network for graphs: a contextual constructive approach[J]. IEEE transactions on neural networks, 2009, 20(3): 498-511.
[28] HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and computational harmonic analysis, 2011, 30(2): 129-150.
[29] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016-09-09) [2021-01-01]. http://arxiv.org/abs/1609.02907.
[30] LI Qimai, HAN Zhichao, WU Xiaoming. Deeper insights into graph convolutional networks for semi-supervised learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018.
[31] OONO K, SUZUKI T. Graph neural networks exponentially lose expressive power for node classification[EB/OL]. (2019-05-27) [2021-01-01]. http://arxiv.org/abs/1905.10947.
[32] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Seattle: IEEE, 2020: 1571-1580.
[33] ULTRALYTICS COMPANY. Yolov5. [EB/OL].[2021-01-01]. https://github.com/ultralytics/yolov5/.2021.
[34] YI Jingru, WU Pengxiang, METAXAS D N. ASSD: attentive single shot multibox detector[J]. Computer vision and image understanding, 2019, 189: 102827.
[35] LIU Songtao, HUANG Di, WANG Yunhong. Receptive field block net for accurate and fast object detection[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 404-419.
[36] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2999-3007.
[37] REDMON J, FARHADI A. yolov3: an incremental improvement[EB/OL]. (2018-04-08) [2021-01-01]. http://arxiv.org/abs/1804.02767.
[38] DUAN Kaiwen, BAI Song, XIE Lingxi, et al. CenterNet: keypoint triplets for object detection[C]//2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 6568-6577.
[39] KIM K, LEE H S. Probabilistic anchor assignment with IoU prediction for object detection[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020: 355-371.
[40] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver: IEEE, 2023: 7464-7475.
Similar References:

Memo

-

Last Update: 2024-11-05

Copyright © CAAI Transactions on Intelligent Systems