[1]PAN Zaiyu,XU Jiameng,WANG Jun,et al.Palmprint and palm vein recognition method based on modal information evaluation strategy[J].CAAI Transactions on Intelligent Systems,2024,19(5):1136-1148.[doi:10.11992/tis.202310002]
Copy

Palmprint and palm vein recognition method based on modal information evaluation strategy

References:
[1] HUANG Zhe, GUO Chengan. Toward cross-dataset finger vein recognition with single-source data[J]. IEEE transactions on instrumentation and measurement, 2024, 73: 2506012.
[2] PAN Zaiyu, WANG Jun, WANG Guoqing, et al. Multi-scale deep representation aggregation for vein recognition[J]. IEEE transactions on information forensics and security, 2020, 16: 1-15.
[3] 马晓, 张番栋, 封举富. 基于深度学习特征的稀疏表示的人脸识别方法[J]. 智能系统学报, 2016, 11(3): 279-286.
MA Xiao, ZHANG Fandong, FENG Jufu. Sparse representation via deep learning features based face recognition method[J]. CAAI transactions on intelligent systems, 2016, 11(3): 279-286.
[4] GUO Xinxin, PENG Jianfeng. Optimization design and implementation of web fingerprint identification[C]//2023 IEEE 12th International Conference on Communication Systems and Network Technologies. Bhopal: IEEE, 2023: 569-573.
[5] 颜廷秦, 周昌雄. 二维EMD分解提高PCA掌纹识别率[J]. 智能系统学报, 2013, 8(4): 377-380.
YAN Tingqin, ZHOU Changxiong. The research of improving PCA recognition rate of palmprints with BEMD[J]. CAAI transactions on intelligent systems, 2013, 8(4): 377-380.
[6] CHEN Liukui, WANG Xiaoxing, JIANG Haiyang, et al. Design of palm vein platform and pattern enhancement model based on Raspberry Pi[C]//2021 IEEE International Conference on Emergency Science and Information Technology. Chongqing: IEEE, 2021: 495-498.
[7] PAN Zaiyu, WANG Jun, SHEN Zhengwen, et al. Disentangled representation and enhancement network for vein recognition[J]. IEEE transactions on circuits and systems for video technology, 2023, 33(8): 4164-4176.
[8] JANI R, AGRAWAL N. A proposed framework for enhancing security in fingerprint and finger-vein multimodal biometric recognition[C]//2013 International Conference on Machine Intelligence and Research Advancement. Katra: IEEE, 2013: 440-444.
[9] 周晨怡, 黄靖, 杨丰, 等. 利用特征距离信息引导决策融合的多模态生物特征识别方法[J]. 科学技术与工程, 2020, 20(10): 4036-4042.
ZHOU Chenyi, HUANG Jing, YANG Feng, et al. Multimodal biometric recognition on decision-level fusion guided by feature distance information[J]. Science technology and engineering, 2020, 20(10): 4036-4042.
[10] KABIR W, AHMAD M O, SWAMY M N S. A two-stage scheme for fusion of hash-encoded features in a multimodal biometric system[C]//2018 16th IEEE International New Circuits and Systems Conference. Montreal: IEEE, 2018: 340-343.
[11] KANG Wenxiong, LU Yuting, LI Dejian, et al. From noise to feature: exploiting intensity distribution as a novel soft biometric trait for finger vein recognition[J]. IEEE transactions on information forensics and security, 2019, 14(4): 858-869.
[12] ZHAO Pengyang, ZHAO Shuping, XUE Jinghao, et al. The neglected background cues can facilitate finger vein recognition[J]. Pattern recognition, 2023, 136: 109199.
[13] 王志强. 基于图像质量评价的掌纹识别算法研究[D]. 北京: 北京交通大学, 2016: 2-67.
WANG Zhiqiang. Research on palmprint recognition algorithm based on image quality evaluation[D]. Beijing: Beijing Jiaotong University, 2016: 2-67.
[14] 李苋兰, 张顶, 黄晞. 基于BP-AdaBoost神经网络的多参数掌静脉图像质量评价法[J]. 计算机系统应用, 2020, 29(3): 20-28.
LI Xianlan, ZHANG Ding, HUANG Xi. Multi-parameter palm vein image quality evaluation method based on BP-AdaBoost neural network[J]. Computer systems & applications, 2020, 29(3): 20-28.
[15] LI Shuyi, ZHANG B. Joint discriminative sparse coding for robust hand-based multimodal recognition[J]. IEEE transactions on information forensics and security, 2021, 16: 3186-3198.
[16] SINGH M, SINGH R, ROSS A. A comprehensive overview of biometric fusion[J]. Information fusion, 2019, 52: 187-205.
[17] 钟德星, 朱劲松, 杜学峰. 掌纹识别研究进展综述[J]. 模式识别与人工智能, 2019, 32(5): 436-445.
ZHONG Dexing, ZHU Jinsong, DU Xuefeng. Progress of palmprint recognition: a review[J]. Pattern recognition and artificial intelligence, 2019, 32(5): 436-445.
[18] MATSUMOTO K. Palm-recognition systems: an ideal means of restricting access to high-security areas[J]. Mitsubishi electric advance, 1985, 31: 31-32.
[19] WANG Xiyu, LI Hengjian, YU Changzhi, et al. An improved palmprint image recognition algorithm via image restoration[C]//2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference. Xi’an: IEEE, 2018: 2687-2691.
[20] YANG Dongliang, SONG C, GAO F, et al. A 3D palm-print recognition method based on local sparse representation and weighted shape index feature[C]//2019 Chinese Automation Congress. Hangzhou: IEEE, 2019: 4537-4540.
[21] P?V?LOI I, IGNAT A, LAZ?R L C, et al. Palmprint recognition with fixed number of SURF keypoints[C]//2021 International Conference on e-Health and Bioengineering. Iasi: IEEE, 2021: 1-4.
[22] LIU Dian, SUN Dongmei. Contactless palmprint recognition based on convolutional neural network[C]//2016 IEEE 13th International Conference on Signal Processing. Chengdu: IEEE, 2016: 1363-1367.
[23] ZHONG Dexing, YANG Yuan, DU Xuefeng. Palmprint recognition using Siamese network[C]//Biometric Recognition. Cham: Springer, 2018: 48-55.
[24] WANG Gengxing, KANG Wenxiong, WU Qiuxia, et al. Generative adversarial network (GAN) based data augmentation for palmprint recognition[C]//2018 Digital Image Computing: Techniques and Applications. Canberra: IEEE, 2018: 1-7.
[25] SHAO Huikai, ZHONG Dexing, DU Xuefeng. Deep distillation hashing for unconstrained palmprint recognition[J]. IEEE transactions on instrumentation and measurement, 2021, 70: 2505613.
[26] Shimizu K. Optical trans-body imaging-Feasibility of optical CT and functional imaging of living body[J]. Medicinal philosophica, 1992, 11: 620-629.
[27] WANG Jiaqiang, YU Ming, QU Hanbing, et al. Analysis of palm vein image quality and recognition with different distance[C]//2013 Fourth International Conference on Digital Manufacturing & Automation. Shinan: IEEE, 2013: 215-218.
[28] SUN Saisai, CONG Xiaoyan, ZHANG Ping, et al. Palm vein recognition based on NPE and KELM[J]. IEEE access, 2021, 9: 71778-71783.
[29] 袁丽莎. 基于深度学习的手掌静脉识别[D]. 广州: 南方医科大学, 2019: 55-88.
YUAN Lisha. Palm vein recognition based on deep learning[D]. Guangzhou: Southern Medical University, 2019: 55-88.
[30] JIA Wei, GAO Jiao, XIA Wei, et al. A performance evaluation of classic convolutional neural networks for 2D and 3D palmprint and palm vein recognition[J]. International journal of automation and computing, 2021, 18(1): 18-44.
[31] DU Dongyang, LU Lijun, FU Ruiyang, et al. Palm vein recognition based on end-to-end convolutional neural network[J]. Journal of southern medical university, 2019, 39(2): 207-214.
[32] WANG Guoqing, SUN Changming, SOWMYA A. Learning a compact vein discrimination model with GANerated samples[J]. IEEE transactions on information forensics and security, 2020, 15: 635-650.
[33] ZHANG D, GUO Zhenhua, LU Guangming, et al. Online joint palmprint and palmvein verification[J]. Expert systems with applications, 2011, 38(3): 2621-2631.
[34] LUO Nan, GUO Zhenhua, WU Gang, et al. Joint palmprint and palmvein verification by Dual Competitive Coding[C]//2011 3rd International Conference on Advanced Computer Control. Harbin: IEEE, 2011: 538-542.
[35] 许学斌, 邢潇敏, 安美娟, 等. 基于多光谱图像融合的掌纹识别方法[J]. 光谱学与光谱分析, 2022, 42(11): 3615-3625.
XU Xuebin, XING Xiaomin, AN Meijuan, et al. Palmprint recognition method based on multispectral image fusion[J]. Spectroscopy and spectral analysis, 2022, 42(11): 3615-3625.
[36] 李俊林, 王华彬, 陶亮. 单幅近红外手掌图像掌静脉和掌纹多特征识别[J]. 计算机工程与应用, 2018, 54(9): 156-164,236.
LI Junlin, WANG Huabin, TAO Liang. Palm vein and palmprint fusion recognition with those two features existing in same near-infrared palm image[J]. Computer engineering and applications, 2018, 54(9): 156-164,236.
[37] WU Tengfei, LENG Lu, KHAN M K, et al. Palmprint-palmvein fusion recognition based on deep hashing network[J]. IEEE access, 2021, 9: 135816-135827.
[38] ZHANG D, KONG W K, YOU J, et al. Online palmprint identification[J]. IEEE transactions on pattern analysis and machine intelligence, 2003, 25(9): 1041-1050.
[39] ZHANG D, GUO Zhenhua, LU Guangming, et al. An online system of multispectral palmprint verification[J]. IEEE transactions on instrumentation and measurement, 2010, 59(2): 480-490.
[40] JIA Wei, ZHANG B, LU Jingting, et al. Palmprint recognition based on complete direction representation[J]. IEEE transactions on image processing, 2017, 26(9): 4483-4498.
[41] JIA Wei, HU Rongxiang, GUI Jie, et al. Palmprint recognition across different devices[J]. Sensors, 2012, 12(6): 7938-7964.
[42] ZHANG Lin, LI Lida, YANG Anqi, et al. Towards contactless palmprint recognition: a novel device, a new benchmark, and a collaborative representation based identification approach[J]. Pattern recognition, 2017, 69: 199-212.
[43] SUN Zhenan, TAN Tieniu, WANG Yunhong, et al. Ordinal palmprint represention for personal identification [represention read representation][C]//2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE, 2005: 279-284
[44] KABACI?SKI R, KOWALSKI M. Vein pattern database and benchmark results[J]. Electronics letters, 2011, 47(20): 1127.
[45] TOME P, MARCEL S. On the vulnerability of palm vein recognition to spoofing attacks[C]//2015 International Conference on Biometrics. Phuket: IEEE, 2015: 319-325.
[46] 吕佩卓, 赖声礼, 陈佳阳, 等. 一种自适应的手背静脉区域定位算法[J]. 微计算机信息, 2008, 24(4): 208-209, 296.
LYU Peizhuo, LAI Shengli, CHEN Jiayang, et al. An adaptive locating algorithm of palm-dorsal vein image[J]. Microcomputer information, 2008, 24(4): 208-209, 296.
[47] MIURA N, NAGASAKA A, MIYATAKE T. Feature extraction of finger vein patterns based on iterative line tracking and its application to personal identification[J]. Systems and computers in Japan, 2004, 35(7): 61-71.
[48] 尚丽, 苏品刚, 淮文军. 一种新的掌纹ROI图像定位方法[J]. 激光与红外, 2012, 42(7): 815-820.
SHANG Li, SU Pingang, HUAI Wenjun. New location method of palmprint ROI images[J]. Laser & infrared, 2012, 42(7): 815-820.
[49] REN Hengyi, SUN Lijuan, GUO Jian, et al. A dataset and benchmark for multimodal biometric recognition based on fingerprint and finger vein[J]. IEEE transactions on information forensics and security, 2022, 17: 2030-2043.
[50] GUO Jian, TU Jiaxiang, HENGYI REN, et al. Finger multimodal feature fusion and recognition based on channel spatial attention[EB/OL]. (2022-09-06) [2023-10-07]. https://arxiv.org/abs/2209.02368.
[51] 李小敏, 陈英. 基于分数层融合的多生物特征融合识别[J]. 长江信息通信, 2021, 34(10): 7-11.
LI Xiaomin, CHEN Ying. Multi-biometric feature fusion recognition based on fractional layer fusion[J]. Changjiang information & communications, 2021, 34(10): 7-11.
[52] 周卫斌, 王阳, 吉书林. 基于特征融合的双模态生物识别方法[J]. 天津科技大学学报, 2022, 37(4): 44-48, 54.
ZHOU Weibin, WANG Yang, JI Shulin. Bimodal biological recognition method based on feature fusion[J]. Journal of Tianjin University of Science & Technology, 2022, 37(4): 44-48, 54.
[53] ZHOU Qing, JIA Wei, YU Ye. Multi-stream convolutional neural networks fusion for palmprint recognition[C]//Biometric Recognition. Cham: Springer, 2022: 72-81.
[54] YANG Weili, HUANG Junduan, CHEN Zhuoming, et al. Multi-view finger vein recognition using attention-based MVCNN[C]//Biometric Recognition. Cham: Springer, 2022: 82-91.
Similar References:

Memo

-

Last Update: 2024-09-05

Copyright © CAAI Transactions on Intelligent Systems