[1]ZHAO Zehua,LIANG Meiyu,XUE Zhe,et al.Client dynamic sampling optimization of efficient reinforcement federated learning based on data quality assessment[J].CAAI Transactions on Intelligent Systems,2024,19(6):1552-1561.[doi:10.11992/tis.202305054]
Copy

Client dynamic sampling optimization of efficient reinforcement federated learning based on data quality assessment

References:
[1] 林伟伟, 石方, 曾岚, 等. 联邦学习开源框架综述[J]. 计算机研究与发展, 2023, 60(7): 1551-1580.
LIN Weiwei, SHI Fang, ZENG Lan, et al. Survey of federated learning open-source frameworks[J]. Journal of computer research and development, 2023, 60(7): 1551-1580.
[2] 田家会, 吕锡香, 邹仁朋, 等. 一种联邦学习中的公平资源分配方案[J]. 计算机研究与发展, 2022, 59(6): 1240-1254.
TIAN Jiahui, LYU Xixiang, ZOU Renpeng, et al. A fair resource allocation scheme in federated learning[J]. Journal of computer research and development, 2022, 59(6): 1240-1254.
[3] LUO Bing, XIAO Wenli, WANG Shiqiang, et al. Tackling system and statistical heterogeneity for federated learning with adaptive client sampling[C]//IEEE INFOCOM 2022-IEEE Conference on Computer Communications. London: IEEE, 2022: 1739-1748.
[4] 李少波, 杨磊, 李传江, 等. 联邦学习概述: 技术、应用及未来[J]. 计算机集成制造系统, 2022, 28(7): 2119-2138.
LI Shaobo , YANG Lei , LI Chuangjiang, et al. Overview of federated learning: technology, applications and future[J]. Computer integrated manufacturing systems, 2022, 28(7): 2119-2138.
[5] 邱鑫源, 叶泽聪, 崔翛龙, 等. 联邦学习通信开销研究综述[J]. 计算机应用, 2022, 42(2): 333-342.
QIU Xinyuan, YE Zecong, CUI Xiaolong, et al. Survey of communication overhead of federated learning[J]. Journal of computer applications, 2022, 42(2): 333-342.
[6] KARIMIREDDY S P, KALE S, MOHRI M, et al. SCAFFOLD: stochastic controlled averaging for federated learning[EB/OL]. (2019-10-14)[2021-01-01]. http://arxiv.org/abs/1910.06378.
[7] SONG Tianshu, TONG Yongxin, WEI Shuyue. Profit allocation for federated learning[C]//2019 IEEE International Conference on Big Data. Los Angeles: IEEE, 2019: 2577-2586.
[8] MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[EB/OL]. (2016-02-17)[2021-01-01]. http://arxiv.org/abs/1602.05629.
[9] LI Tian, SAHU A K, ZAHEER M, et al. Federated optimization in heterogeneous networks[EB/OL]. (2018-12-14)[2021-01-01]. http://arxiv.org/abs/1812.06127.
[10] NISHIO T, YONETANI R. Client selection for federated learning with heterogeneous resources in mobile edge[C]//ICC 2019—2019 IEEE International Conference on Communications. Shanghai: IEEE, 2019: 1-7.
[11] CHO Y J, WANG Jianyu, JOSHI G. Client selection in federated learning: convergence analysis and power-of-choice selection strategies[EB/OL]. (2020-12-03)[2021-01-01]. http://arxiv.org/abs/2010.01243.
[12] FRABONI Y, VIDAL R, KAMENI L, et al. Clustered sampling: low-variance and improved representativity for clients selection in federated learning[EB/OL]. (2021-05-12)[2021-12-01]. http://arxiv.org/abs/2105.05883.
[13] ZHAO Yue, LI Meng, LAI Liangzhen, et al. Federated learning with non-IID data[EB/OL]. (2018-06-02)[2021-01-01]. http://arxiv.org/abs/1806.00582.
[14] KOLLIAS G, SALONIDIS T, WANG Shiqiang. Sketch to Skip and Select: communication efficient federated learning using locality sensitive hashing[M]//Lecture Notes in Computer Science. Cham: Springer International Publishing, 2023: 72-83.
[15] WANG Hao, KAPLAN Z, NIU Di, et al. Optimizing federated learning on non-IID data with reinforcement learning[C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications. Toronto: IEEE, 2020: 1698-1707.
[16] HUANG Tiansheng, LIN Weiwei, SHEN Li, et al. Stochastic client selection for federated learning with volatile clients[J]. IEEE internet of things journal, 2022, 9(20): 20055-20070.
[17] JI Shaoxiong, JIANG Wenqi, WALID A, et al. Dynamic sampling and selective masking for communication-efficient federated learning[EB/OL]. (2020-03-21)[2021-01-01]. http://arxiv.org/abs/2003.09603.
[18] RAI S, KUMARI A, PRASAD D K. Client selection in federated learning under imperfections in environment[J]. AI, 2022, 3(1): 124-145.
[19] LI Qinbin, HE Bingsheng, SONG D. Model-contrastive federated learning[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 10708-10717.
[20] WACHI A, SUI Yanan. Safe reinforcement learning in constrained Markov decision processes[EB/OL]. (2008-08-15)[2021-01-01]. http://arxiv.org/abs/2008.06626.
[21] HENDERSON P, ISLAM R, BACHMAN P, et al. Deep reinforcement learning that matters[C]//Proceedings of the AAAI Conference on Artificial Intelligence. AAAI , 2018.
[22] FENG Y, LI L, LIU Q. A kernel loss for solving the bellman equation[J]. Advances in neural information processing systems, 2019, 32.
[23] ZHANG Jie, GUO Song, QU Zhihao, et al. Adaptive federated learning on non-IID data with resource constraint[J]. IEEE transactions on computers, 2022, 71(7): 1655-1667.
[24] NICOLSON A, PALIWAL K K. Deep learning for minimum mean-square error approaches to speech enhancement[J]. Speech communication, 2019, 111: 44-55.
Similar References:

Memo

-

Last Update: 2024-11-05

Copyright © CAAI Transactions on Intelligent Systems