[1]TIAN Shunyu,OUYANG Yongping,WEI Changyun.Collision avoidance approach with heuristic correction policy for mobile robot navigation in dynamic environments[J].CAAI Transactions on Intelligent Systems,2024,19(6):1492-1502.[doi:10.11992/tis.202304056]
Copy

Collision avoidance approach with heuristic correction policy for mobile robot navigation in dynamic environments

References:
[1] DESOUZA G N, KAK A C. Vision for mobile robot navigation: a survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2002, 24(2): 237-267.
[2] KRUSE T, PANDEY A K, ALAMI R, et al. Human-aware robot navigation: a survey[J]. Robotics and autonomous systems, 2013, 61(12): 1726-1743.
[3] ADAMKIEWICZ M, CHEN T, CACCAVALE A, et al. Vision-only robot navigation in a neural radiance world[J]. IEEE robotics and automation letters, 2022, 7(2): 4606-4613.
[4] ZHAO Haoning, WANG Chaoqun, GUO Rui, et al. Autonomous live working robot navigation with real-time detection and motion planning system on distribution line[J]. High voltage, 2022, 7(6): 1204-1216.
[5] EBADI K, BERNREITER L, BIGGIE H, et al. Present and future of SLAM in extreme environments: The DARPA SubT challenge[J]. IEEE transactions on robotics, 2024, 40: 936-959.
[6] SINGH K J, KAPOOR D S, THAKUR K, et al. Map making in social indoor environment through robot navigation using active SLAM[J]. IEEE access, 2022, 10: 134455-134465.
[7] GRANDO R B, DE JESUS J C, KICH V A, et al. Double critic deep reinforcement learning for mapless 3D navigation of unmanned aerial vehicles[J]. Journal of intelligent & robotic systems, 2022, 104(2): 29.
[8] LI Hanxiao, LUO Biao, SONG Wei, et al. Predictive hierarchical reinforcement learning for path-efficient mapless navigation with moving target[J]. Neural networks, 2023, 165: 677-688.
[9] LIKHACHEV M, FERGUSON D I, GORDON G J, et al. Anytime dynamic A*: An anytime, replanning algorithm[C]//ICAPS. Monterey, 2005, 5: 262-271.
[10] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[M]//Cox IJ, Wilfong GT. Autonomous Robot Vehicles. New York: Springer, 1986: 396-404.
[11] NASIR J, ISLAM F, MALIK U, et al. RRT*-SMART: a rapid convergence implementation of RRT[J]. International journal of advanced robotic systems, 2013, 10(7): 299.
[12] DURRANT-WHYTE H, BAILEY T. Simultaneous localization and mapping: part I[J]. IEEE robotics & automation magazine, 2006, 13(2): 99-110.
[13] ALHMIEDAT T, MAREI A M, MESSOUDI W, et al. A SLAM-based localization and navigation system for social robots: the pepper robot case[J]. Machines, 2023, 11(2): 158.
[14] TAHERI H, XIA Zhaochun. SLAM: definition and evolution[J]. Engineering applications of artificial intelligence, 2021, 97: 104032.
[15] CHAPLOT D S, GANDHI D, GUPTA S, et al. Learning to explore using active neural SLAM[EB/OL]. (2020-04-10)[2021-01-01]. http://arxiv.org/abs/2004.05155.
[16] XUE Honghu, HEIN B, BAKR M, et al. Using deep reinforcement learning with automatic curriculum learning for mapless navigation in intralogistics[J]. Applied sciences, 2022, 12(6): 3153.
[17] HAN Yiheng, ZHAN I H, ZHAO Wang, et al. Deep reinforcement learning for robot collision avoidance with self-state-attention and sensor fusion[J]. IEEE robotics and automation letters, 2022, 7(3): 6886-6893.
[18] 欧阳勇平, 魏长赟, 蔡帛良. 动态环境下分布式异构多机器人避障方法研究[J]. 智能系统学报, 2022, 17(4): 752-763.
OUYANG Yongping, WEI Changyun, CAI Boliang. Collision avoidance approach for distributed heterogeneous multirobot systems in dynamic environments[J]. CAAI transactions on intelligent systems, 2022, 17(4): 752-763.
[19] ZHU Wei, HAYASHIBE M. A hierarchical deep reinforcement learning framework with high efficiency and generalization for fast and safe navigation[J]. IEEE transactions on industrial electronics, 2023, 70(5): 4962-4971.
[20] 李鹏, 阮晓钢, 朱晓庆, 等. 基于深度强化学习的区域化视觉导航方法[J]. 上海交通大学学报, 2021, 55(5): 575-585.
LI Peng, RUAN Xiaogang, ZHU Xiaoqing, et al. A regionalization vision navigation method based on deep reinforcement learning[J]. Journal of Shanghai Jiaotong University, 2021, 55(5): 575-585.
[21] PUTERMAN M L. Chapter 8 Markov decision processes[M]//Handbooks in Operations Research and Management Science. Amsterdam: Elsevier, 1990: 331-434.
[22] 刘克. 实用马尔可夫决策过程[M]. 北京: 清华大学出版社, 2004.
LIU Ke. Practical Markov decision processes[M]. Beijing: Tsinghua University Press, 2024.
[23] SILVER D, LEVER G, HEESS N, et al. Deterministic policy gradient algorithms[C]//International conference on machine learning. Beijing:ICML, 2014: 387-395.
[24] FUJIMOTO S, VAN HOOF H, MEGER D. Addressing function approximation error in actor-critic methods[EB/OL]. (2018-02-26)[2021-01-01]. http://arxiv.org/abs/1802.09477.
[25] SCHAUL T, QUAN J, ANTONOGLOU I, et al. Prioritized experience replay[EB/OL]. (2015-11-18)[2021-01-01]. http://arxiv.org/abs/1511.05952.
[26] LI Peng, DING Xiangcheng, SUN Hongfang, et al. Research on dynamic path planning of mobile robot based on improved DDPG algorithm[J]. Mobile information systems, 2021, 2021: 5169460.
[27] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[EB/OL]. (2015-09-09)[2021-01-01]. http://arxiv.org/abs/1509.02971.
Similar References:

Memo

-

Last Update: 2024-11-05

Copyright © CAAI Transactions on Intelligent Systems