[1]ZHANG Xinyi,TAN Yao,XING Xianglei.Deep feature fusion for underwater-image restoration based on physical priors[J].CAAI Transactions on Intelligent Systems,2023,18(6):1185-1196.[doi:10.11992/tis.202304038]
Copy

Deep feature fusion for underwater-image restoration based on physical priors

References:
[1] IQBAL K, ODETAYO M, JAMES A, et al. Enhancing the low quality images using unsupervised colour correction method[C]//2010 IEEE International Conference on Systems, Man and Cybernetics. Istanbul: IEEE, 2010: 1703-1709.
[2] ABDUL GHANI A S, MAT ISA N A. Underwater image quality enhancement through integrated color model with Rayleigh distribution[J]. Applied soft computing, 2015, 27: 219–230.
[3] ANCUTI C O, ANCUTI C, DE VLEESCHOUWER C, et al. Color balance and fusion for underwater image enhancement[J]. IEEE transactions on image processing, 2017, 27(1): 379–393.
[4] ANCUTI C, ANCUTI C O, HABER T, et al. Enhancing underwater images and videos by fusion[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 81-88.
[5] GALDRAN A, PARDO D, PICóN A, et al. Automatic red-channel underwater image restoration[J]. Journal of visual communication and image representation, 2015, 26: 132–145.
[6] DREWS P L J J, NASCIMENTO E R, BOTELHO S S C, et al. Underwater depth estimation and image restoration based on single images[J]. IEEE computer graphics and applications, 2016, 36(2): 24–35.
[7] LI Chongyi, GUO Jichang, CONG Runmin, et al. Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior[J]. IEEE transactions on image processing, 2016, 25(12): 5664–5677.
[8] LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2022: 9992-10002.
[9] LIU Zhuang, MAO Hanzi, WU Chaoyuan, et al. A ConvNet for the 2020s[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 11966-11976.
[10] LI Jie, SKINNER K A, EUSTICE R M, et al. WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images[J]. IEEE robotics and automation letters, 2018, 3(1): 387–394.
[11] 李微, 毕晓君. 改进U-Net网络的水下图像增强[J]. 应用科技, 2021, 48(3): 34–40
LI Wei, BI Xiaojun. Underwater image enhancement based on improved U-Net model[J]. Applied science and technology, 2021, 48(3): 34–40
[12] LI Chongyi, GUO Jichang, GUO Chunle. Emerging from water: underwater image color correction based on weakly supervised color transfer[J]. IEEE signal processing letters, 2018, 25(3): 323–327.
[13] PENG Y T, CAO Keming, COSMAN P C. Generalization of the dark channel prior for single image restoration[J]. IEEE transactions on image processing, 2018, 27(6): 2856–2868.
[14] JAFFE J S. Computer modeling and the design of optimal underwater imaging systems[J]. IEEE journal of oceanic engineering, 1990, 15(2): 101–111.
[15] HU Jie, SHEN Li, SUN Gang. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132-7141.
[16] DONG Chao, LOY C C, HE Kaiming, et al. Image super-resolution using deep convolutional networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(2): 295–307.
[17] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11531-11539.
[18] KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 8107-8116.
[19] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE transactions on image processing:a publication of the IEEE signal processing society, 2004, 13(4): 600–612.
[20] KARRAS T, AILA T LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[EB/OL]. (2017-10-27)[2023-04-18]. https://arxiv.org/abs/1710.10196.
[21] ARORA S, COHEN N, HAZAN E. On the optimization of deep networks: implicit acceleration by overparameterization[EB/OL]. (2018-02-19) [2023-04-18]. https://arxiv.org/abs/1802.06509.
[22] JUSTIN J, ALEXANDRE A, LI Feifei. Perceptual losses for real-time style transfer and super-resolution[C]//Computer Vision–ECCV 2016. Amsterdam: Springer International Publishing, 2016: 694-711.
[23] LI Chongyi, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement[J]. Pattern recognition, 2020, 98: 107038.
[24] UPLAVIKAR P, WU Zhenyu, WANG Zhangyang. All-in-one underwater image enhancement using domain-adversarial learning[EB/OL]. (2019-05-30) [2023-04-18]. https://arxiv.org/abs/1905.13342.
[25] HAN Junlin, SHOEIBY M, MALTHUS T, et al. Underwater image restoration via contrastive learning and a real-world dataset[J]. Remote sensing, 2022, 14(17): 4297.
[26] JERLOV N G. Marine optics[M]. [S. l. ]: Elsevier, 1976.
[27] NATHAN S, DEREK H, PUSHMEET K, et al. Indoor segmentation and support inference from RGBD images[C]//Computer Vision-ECCV 2012. Florence: Springer International Publishing, 2012: 746–760.
[28] LI Chongyi, GUO Jichang, CHEN Sanji, et al. Underwater image restoration based on minimum information loss principle and optical properties of underwater imaging[C]//2016 IEEE International Conference on Image Processing. Phoenix: IEEE, 2016: 1993-1997.
[29] PENG Yantsung, PAMELA C C. Underwater image restoration based on image blurriness and light absorption[J]. IEEE transactions on image processing, 2017, 26(4): 1579–1594.
[30] QIN Xuebin, ZHANG Zichen, HUANG Chenyang, et al. BASNet: boundary-aware salient object detection[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 7471-7481.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems