[1]QIU Chengyu,LI Bing,LAM Saikit,et al.Radioactive multi-omics collaborative learning for adaptive radiation therapy eligibility prediction in nasopharyngeal carcinoma[J].CAAI Transactions on Intelligent Systems,2024,19(1):58-66.[doi:10.11992/tis.202304029]
Copy

Radioactive multi-omics collaborative learning for adaptive radiation therapy eligibility prediction in nasopharyngeal carcinoma

References:
[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA:a cancer journal for clinicians, 2021, 71(3): 209–249.
[2] 梁锌, 杨剑, 高婷, 等. 中国鼻咽癌流行概况[J]. 中国肿瘤, 2016, 25(11): 835–840
LIANG Xin, YANG Jian, GAO Ting, et al. Nasopharynx cancer epidemiology in China[J]. China cancer, 2016, 25(11): 835–840
[3] CHEN Yupei, CHAN A T C, LE Q T, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64–80.
[4] LIU Yanxia, SHI Hongyu, HUANG Sijuan, et al. Early prediction of acute xerostomia during radiation therapy for nasopharyngeal cancer based on delta radiomics from CT images[J]. Quantitative imaging in medicine and surgery, 2019, 9(7): 1288–1302.
[5] 金哲, 张斌, 张璐, 等. 基于多参数MRI影像组学及临床特征的鼻咽癌远处转移可解释性机器学习预测模型[J]. 磁共振成像, 2022, 13(11): 22–29
JIN Zhe, ZHANG Bin, ZHANG Lu, et al. Prediction of distant metastasis in nasopharyngeal carcinoma by interpretable machine learning model based on multiparametric MRI radiomics and clinical factors[J]. Chinese journal of magnetic resonance imaging, 2022, 13(11): 22–29
[6] ZHANG Xingping, ZHANG Yanchun, ZHANG Guijuan, et al. Deep learning with radiomics for disease diagnosis and treatment: challenges and potential[J]. Frontiers in oncology, 2022, 12: 773840.
[7] MAYERHOEFER M E, MATERKA A, LANGS G, et al. Introduction to radiomics[J]. Journal of nuclear medicine: official publication, Society of Nuclear Medicine, 2020, 61(4): 488–495.
[8] HARDING-THEOBALD E, LOUISSAINT J, MARAJ B, et al. Systematic review: radiomics for the diagnosis and prognosis of hepatocellular carcinoma[J]. Alimentary pharmacology & therapeutics, 2021, 54(7): 890–901.
[9] AVANZO M, STANCANELLO J, EL NAQA I. Beyond imaging: the promise of radiomics[J]. Physica medica, 2017, 38: 122–139.
[10] ZHOU Lu, WEN Yuefeng, ZHANG Guoqian, et al. Machine learning-based multiomics prediction model for radiation pneumonitis[J]. Journal of oncology, 2023, 2023: 1–9.
[11] CAI C, LYU Wenbing, CHI F, et al. Prognostic generalization of multi-level CT-dose fusion dosiomics from primary tumor and lymph node in nasopharyngeal carcinoma[J]. Medical physics, 2023, 50(2): 922–934.
[12] CUI Sunan, TEN HAKEN R K, EL NAQA I. Integrating multiomics information in deep learning architectures for joint actuarial outcome prediction in non-small cell lung cancer patients after radiation therapy[J]. International journal of radiation oncology biology physics, 2021, 110(3): 893–904.
[13] TONG Li, WU Hang, WANG M D. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer[J]. Methods, 2021, 189: 74–85.
[14] XU Chang, TAO Dacheng, XU Chao. A survey on multi-view learning[EB/OL]. (2013?04?20)[2023?03?24]. https://arxiv.org/abs/1304.5634.pdf.
[15] 包丹, 罗德红. 基于MR的影像组学在鼻咽癌中的研究进展[J]. 国际医学放射学杂志, 2020, 43(5): 560–564
BAO Dan, LUO Dehong. Research progress in MR-based radiomics of nasopharyngeal carcinoma[J]. International journal of medical radiology, 2020, 43(5): 560–564
[16] FANETTI G, AVANZO M, PIRRONE G, et al. PO-122 CT/PET based dosiomics and radiomics model predicts local control of nasopharyngeal carcinoma[J]. Radiotherapy and oncology, 2019, 132: 62–63.
[17] FANG Xiaozhao, XU Yong, LI Xuelong, et al. Regularized label relaxation linear regression[J]. IEEE transactions on neural networks and learning systems, 2018, 29(4): 1006–1018.
[18] WU Aiqian, LI Yongbao, QI Mengke, et al. Dosiomics improves prediction of locoregional recurrence for intensity modulated radiotherapy treated head and neck cancer cases[J]. Oral oncology, 2020, 104: 104625.
[19] LEE S H, HAN Peijin, HALES R K, et al. Multi-view radiomics and dosiomics analysis with machine learning for predicting acute-phase weight loss in lung cancer patients treated with radiotherapy[J]. Physics in medicine & biology, 2020, 65(19): 195015.
[20] GABRY? H S, BUETTNER F, STERZING F, et al. Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia[J]. Frontiers in oncology, 2018, 8: 35.
[21] BUETTNER F, MIAH A B, GULLIFORD S L, et al. Novel approaches to improve the therapeutic index of head and neck radiotherapy: an analysis of data from the PARSPORT randomised phase III trial[J]. Radiotherapy and oncology, 2012, 103(1): 82–87.
[22] WU Binbin, RICCHETTI F, SANGUINETI G, et al. Patient geometry-driven information retrieval for IMRT treatment plan quality control[J]. Medical physics, 2009, 36(12): 5497–5505.
[23] LI Bing, ZHENG Xiaoli, GUO Wei, et al. Radiation pneumonitis prediction using multi- omics fusion based on a novel machine learning pipeline[J]. Human-centric computing and information sciences, 2022, 12: 49.
[24] ZHANG Zhong, QIN Zhili, LI Peiyan, et al. Multi-view discriminative learning via joint non-negative matrix factorization[C]//International Conference on Database Systems for Advanced Applications. Cham: Springer, 2018: 542?557.
[25] YANG Muli, DENG Cheng, NIE Feiping. Adaptive-weighting discriminative regression for multi-view classification[J]. Pattern recognition, 2019, 88: 236–245.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems