[1]WANG Luyao,WANG Fengsui,YAN Tao,et al.Cross-modal person re-identification combining multi-scale features and confusion learning[J].CAAI Transactions on Intelligent Systems,2024,19(4):898-908.[doi:10.11992/tis.202304010]
Copy

Cross-modal person re-identification combining multi-scale features and confusion learning

References:
[1] 宋婉茹, 赵晴晴, 陈昌红, 等. 行人重识别研究综述[J]. 智能系统学报, 2017, 12(6): 770–780
SONG Wanru, ZHAO Qingqing, CHEN Changhong, et al. Survey on pedestrian re-identification research[J]. CAAI transactions on intelligent systems, 2017, 12(6): 770–780
[2] 罗浩, 姜伟, 范星, 等. 基于深度学习的行人重识别研究进展[J]. 自动化学报, 2019, 45(11): 2032-2049.
LUO Hao, JIANG Wei, FAN Xing, et al. A survey on deep learning based person re-identification[J]. Acta automatica sinica, 2019, 45(11): 2032-2049.
[3] 刘帅师, 程曦, 郭文燕, 等. 深度学习方法研究新进展[J]. 智能系统学报, 2016, 11(5): 567–577
LIU Shuaishi, CHENG Xi, GUO Wenyan, et al. Progress report on new research in deep learning[J]. CAAI transactions on intelligent systems, 2016, 11(5): 567–577
[4] 邵晓雯, 帅惠, 刘青山. 融合属性特征的行人重识别方法[J]. 自动化学报, 2022, 48(2): 564–571
SHAO Xiaowen, SHUAI Hui, LIU Qingshan. Person re-identification based on fused attribute features[J]. Acta automatica sinica, 2022, 48(2): 564–571
[5] 石跃祥, 周玥. 基于阶梯型特征空间分割与局部注意力机制的行人重识别[J]. 电子与信息学报, 2022, 44(1): 195–202
SHI Yuexiang, ZHOU Yue. Person re-identification based on stepped feature space segmentation and local attention mechanism[J]. Journal of electronics & information technology, 2022, 44(1): 195–202
[6] 庄建军, 庄宇辰. 一种结构化双注意力混合通道增强的跨模态行人重识别方法[J]. 电子与信息学报, 2024, 46(2): 518–526
ZHUANG Jianjun, ZHUANG Yuchen. A cross-modal person re-identification method based on hybrid channel augmentation with structured dual attention[J]. Journal of electronics & information technology, 2024, 46(2): 518–526
[7] 孙锐, 张磊, 余益衡, 等. 基于局部异构聚合图卷积网络的跨模态行人重识别[J]. 电子学报, 2023, 51(4): 810–825
SUN Rui, ZHANG Lei, YU Yiheng, et al. Cross-modality person re-identification based on locally heterogeneous polymerization graph convolutional network[J]. Acta electronica sinica, 2023, 51(4): 810–825
[8] WU Ancong, ZHENG Weishi, YU Hongxing, et al. RGB-infrared cross-modality person re-identification[C]//The IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 5390-5399.
[9] YE Mang, LAN Xiangyuan, LI Jiawei, et al. Hierarchical discriminative learning for visible thermal person re-identification[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 7501-7508.
[10] YE Mang, WANG Zheng, LAN Xiangyuan, et al. Visible thermal person re-identification via dual-constrained top-ranking[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: Morgan Kaufmann, 2018: 1092-1099.
[11] ZHU Yuanxin, YANG Zhao, WANG Li, et al. Hetero-center loss for cross-modality person re-identification[J]. Neurocomputing, 2020, 386: 97–109.
[12] WANG Guanan, ZHANG Tianzhu, CHENG Jian, et al. RGB-infrared cross-modality person re-identification via joint pixel and feature alignment[C]//The IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3622-3631.
[13] LI Diangang, WEI Xing, HONG Xiaopeng, et al. Infrared-visible cross-modal person re-identification with an x modality[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 4610-4617.
[14] ZHANG Yukang, YAN Yan, LU Yang, et al. Towards a unified middle modality learning for visible-infrared person re-identification[C]//Proceedings of the 29th ACM International Conference on Multimedia. Chengdu: ACM, 2021: 788-796.
[15] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//The IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[16] SUN Yifan, ZHENG Liang, YANG Yi, et al. Beyond part models: person retrieval with refined part pooling[C]//Proceedings of the European Conference on Computer Vision. Munich: IEEE, 2018: 480-496.
[17] RADENOVI? F, TOLIAS G, CHUM O. Fine-tuning CNN image retrieval with no human annotation[J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 41(7): 1655–1668.
[18] HAO Xin, ZHAO Sanyuan, YE Mang, et al. Cross-modality person re-identification via modality confusion and center aggregation[C]//The IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021: 16383-16392.
[19] YE Mang, SHEN Jianbing, LIN Gaojie, et al. Deep learning for person re-identification: a survey and outlook[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(6): 2872–2893.
[20] LIU Haijun, TAN Xiaoheng, ZHOU Xichuan. Parameter sharing exploration and hetero-center triplet loss for visible-thermal person re-identification[J]. IEEE transactions on multimedia, 2021, 23: 4414–4425.
[21] LIU Jialun, SUN Yifan, ZHU Feng, et al. Learning memory-augmented unidirectional metrics for cross-modality person re-Identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 19366-19375.
[22] YE Mang, LAN Xiangyan, WANG Zheng, et al. Bi-directional center-constrained top-ranking for visible thermal person re-identification[J]. IEEE transactions on information forensics and security, 2020, 15: 407–419.
[23] WANG Zhixiang, WANG Zheng, ZHENG Yinqiang, et al. Learning to reduce dual-level discrepancy for infrared-visible person re-identification[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 618-626.
[24] WU Ancong, ZHENG Weishi, GONG Shaogang, et al. RGB-IR person re-identification by cross-modality similarity preservation[J]. International journal of computer vision, 2020, 128(6): 1765–1785.
[25] XIANG Xuezhi, LYU Ning, YU Zeting, et al. Cross-modality person re-identification based on dual-path multi-branch network[J]. IEEE sensors journal, 2019, 19(23): 11706–11713.
[26] BASARAN E, GOKMEN M, KAMASAK M E. An efficient framework for visible-infrared cross modality person re-identification[J]. Signal processing: image communication, 2020, 87: 115933.
[27] YE Mang, SHEN Jianbing, CRANDALL D J, et al. Dynamic dual-attentive aggregation learning for visible-infrared person re-identification[C]//The 16th European Conference on Computer Vision. Glasgow: Springer, 2020: 229-247.
[28] PU Nan, CHEN Wei, LIU Yu, et al. Dual gaussian-based variational subspace disentanglement for visible-infrared person re-identification[C]//Proceedings of the 28th ACM International Conference on Multimedia. Seattle: ACM, 2020: 2149-2158.
[29] LU Yan, WU Yue, LIU Bin, et al. Cross-modality person re-identification with shared-specific feature transfer[C]//The IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 13376-13386.
[30] WU Qiong, DAI Pingyang, CHEN Jie, et al. Discover cross-modality nuances for visible-infrared person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 4330-4339.
[31] 石林波, 李华锋, 张亚飞, 等. 模态不变性特征学习和一致性细粒度信息挖掘的跨模态行人重识别[J]. 模式识别与人工智能, 2022, 35(12): 1064–1077
SHI Linbo, LI Huafeng, ZHANG Yafei, et al. Modal invariance feature learning and consistent fine-grained information mining based cross-modal person re-identification[J]. Pattern recognition and artificial intelligence, 2022, 35(12): 1064–1077
[32] ZHONG Zhun, ZHENG Liang, CAO Donglin, et al. Re-ranking person re-identification with k-reciprocal encoding[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 3652-3661.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems