[1]GUO Dawei,LI Jinghao,LU Jun.Multi-scale deep learning method for 3D point cloud registration[J].CAAI Transactions on Intelligent Systems,2024,19(4):817-826.[doi:10.11992/tis.202304007]
Copy

Multi-scale deep learning method for 3D point cloud registration

References:
[1] REN Tianyu, WU Ruicheng. An acceleration algorithmof 3D point cloud registration based on iterative closet point[C]//2020 Asia-Pacific Conference on Image Processing, Electronics and Computers. Dalian: IEEE, 2020: 271-276.
[2] FENG Shanshan, LIN Yun, WANG Yanping, et al. 3D point cloud reconstruction using inversely mapping and voting from single pass CSAR images[J]. Remote sensing, 2021, 13(17): 3534.
[3] 李姗姗, 张娜娜, 张媛媛, 等. 基于MSD-Vnet的三维医学图像配准[J]. 电视技术, 2021, 45(1): 51–56
LI Shanshan, ZHANG Nana, ZHANG Yuanyuan, et al. Three-dimensional medical image registration based on MSD-Vnet[J]. Television technology, 2021, 45(1): 51–56
[4] 鹿道玺. 基于多源信息融合的SLAM算法研究[J]. 无线互联科技, 2022, 19(24): 141–144
LU Daoxi. Research on SLAM algorithm based on multi-source information fusion[J]. Wireless internet technology, 2022, 19(24): 141–144
[5] SAYED H, AHMED E, AHMED S, et al. A computer-aided diagnostic system for diabetic retinopathy based on local and global extracted features[J]. Applied sciences, 2022, 12(16): 8326–8326.
[6] QI C R, SU Hao, MO Kaichun, et al. Pointnet: deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 52-660.
[7] ZENG Andy, SONG Shuran, NIEBNER M, et al. 3DMatch: learning local geometric descriptors from RGB-dreconstructions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 1802-1811.
[8] ELBAZ G, AVRAHAM T, FISCHER A. 3D point cloud registration for localization using a deep neuralnetwork auto-encoder[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. Honolulu: IEEE, 2017: 4631-4640.
[9] LI J, LEE G H. Usip: unsupervised stable interest point detection from 3d point clouds[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 361-370.
[10] LU Fan, CHEN Guang, LIU Yinlong, et al. Rskdd-net: random sample-based keypoint detector and descriptor[EB/OL]. (2020-10-23)[2023-04-01]. https://doi.org/10.48550/arXiv.2010.12394.
[11] YEW Z J, LEE G H. 3D featnet: weakly supervised local 3d features for point cloud registration[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 607-623.
[12] SCHROFF F, KALENICHENKO D, PHILBIN J. Facenet: a unified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 815-823.
[13] ELIZEU M O J, DANIEL R S, GIOVANA A R M. A new variant of the ICP algorithm for pairwise 3D point cloud registration[J]. American academic scientific research journal for engineering, technology, and sciences, 2022, 85(1): 71–88.
[14] MYRONENKO A, SONG X. Point set registration: coherent point drift[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(12): 2262–2275.
[15] GAO W, TEDRAKE R. Filterreg: robust and efficient probabilistic point-set registration using gaussian filter and twist parameterization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 11095-11104.
[16] JIANG Huijun, LI Quefeng, LIN J T, et al. Classification of disease recurrence using transition likelihoods with expectation-maximization algorithm[J]. Statistics in medicine, 2022, 41(23): 4697–4715.
[17] LI Ding, CHEN Feng. Deep mapping: unsupervised map estimation from multiple point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 8650-8659.
[18] AOKI Y, GOFORTH H, SRIVATSAN R A, et al. Pointnetlk: robust & efficient point cloud registrationusing pointnet[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 7163-7172.
[19] 林桂潮, 张青, 邹湘军. 基于改进Lucas-Kanade的亚像素级零件图像配准[J]. 计算机应用研究, 2017, 34(5): 1577–1580, 1593
LIN Guichao, ZHANG Qing, ZOU Xiangjun. Subpixel level parts image registration based on improved lucas-kanade[J]. Application research of computers, 2017, 34(5): 1577–1580, 1593
[20] SARODE V, LI X, GOFORTH H, et al. PCRNet: point cloud registration network using pointNet encoding[EB/OL]. (2019-08-21)[2023-04-01]. https://doi.org/10.48550/arXiv.1908.07906.
[21] WANG Y, SOLOMON J M. Deep closest point: learning representations for point cloud registration[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 3523-3532.
[22] GU Fengwei, LU Jun, CAI Chengtao. RPformer: a robust parallel transformer for visual tracking in complex scenes[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 1–14.
[23] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2017-06-12)[2023-04-01]. https://doi.org/10.48550/arXiv.1706.03762.
[24] 何翠萍. 应用区域生长的无人船红外图像精确分割方法[J]. 信息与电脑(理论版), 2022, 34(24): 81–83
HE Cuiping. Accurate segmentation method of infrared image of unmanned ship growing in application area[J]. Information and computer(theoretical edition), 2022, 34(24): 81–83
[25] YU Zhong, Intrinsic shape signatures: a shape descriptor for 3D object recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Kyoto: IEEE, 2009: 689-696.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems