[1]LI Na,XU Sen,XU Xiufang,et al.A three-level weighted approach for text clustering ensemble[J].CAAI Transactions on Intelligent Systems,2024,19(4):807-816.[doi:10.11992/tis.202303029]
Copy

A three-level weighted approach for text clustering ensemble

References:
[1] 李洁, 高新波, 焦李成. 基于特征加权的模糊聚类新算法[J]. 电子学报, 2006, 34(1): 89–92
LI Jie, GAO Xinbo, JIAO Licheng. A new feature weighted fuzzy clustering algorithm[J]. Acta electronica sinica, 2006, 34(1): 89–92
[2] JIA Caiyan, CARSON M B, WANG Xiaoyang, et al. Concept decompositions for short text clustering by identifying word communities[J]. Pattern recognition, 2018, 76(4): 691–703.
[3] XIE Junyuan, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]//The 33rd International Conference on Machine Learning. New York: W&CP, 2016: 478-487.
[4] 冯冰, 李绍滋. 中医脉诊信号的无监督聚类分析研究[J]. 智能系统学报, 2018, 13(4): 564–570
FENG Bing, LI Shaozi. Unsupervised clustering analysis of human-pulse signal in traditional Chinese medicine[J]. CAAI transactions on intelligent systems, 2018, 13(4): 564–570
[5] 张智, 毕晓君. 基于风格转换的无监督聚类行人重识别[J]. 智能系统学报, 2021, 16(1): 48–56
ZHANG Zhi, BI Xiaojun. Clustering approach based on style transfer for unsupervised person re-identification[J]. CAAI transactions on intelligent systems, 2021, 16(1): 48–56
[6] STREHL A, GHOSH J. Cluster ensembles: a knowledge reuse framework for combining multiple partitions[J]. Journal of machine learning research, 2002, 3(3): 583–617.
[7] FRAJ M, BEN HAJKACEM M A, ESSOUSSI N. Ensemble method for multi-view text clustering[C]//International Conference on Computational Collective Intelligence. Hendaye: Springer, 2019: 219-231.
[8] 张颖怡, 章成志, 陈果. 基于关键词的学术文本聚类集成研究[J]. 情报学报, 2019, 38(8): 860–871
ZHANG Yingyi, ZHANG Chengzhi, CHEN Guo. Research on clustering integration of academic texts based on keywords[J]. Journal of the China society for scientific and technical information, 2019, 38(8): 860–871
[9] AL-SHAMASI S, MENAI M. Ensemble-based clustering for writing style change detection in multi-authored textual documents[C]//Proceedings of the Working Notes of CLEF 2022. Bologna: CEUR Workshop Proc, 2022: 2357-2374.
[10] 张美琴, 白亮, 王俊斌. 基于加权聚类集成的标签传播算法[J]. 智能系统学报, 2018, 13(6): 994–998
ZHANG Meiqin, BAI Liang, WANG Junbin. Label propagation algorithm based on weighted clustering ensemble[J]. CAAI transactions on intelligent systems, 2018, 13(6): 994–998
[11] 廖彬, 黄静莱, 王鑫, 等. SCEA: 一种适应高维海量数据的并行聚类集成算法[J]. 电子学报, 2021, 49(6): 1077–1087
LIAO Bin, HUANG Jinlai, WANG Xin, et al. SCEA: a parallel clustering ensemble algorithm for high-dimensional massive data[J]. Acta electronica sinica, 2021, 49(6): 1077–1087
[12] ZHANG Mimi. Weighted clustering ensemble: a review[J]. Pattern recognition, 2022, 124: 108428.
[13] SHEN Qiaoyun, QIU Yican. A novel text ensemble clustering based on weighted entropy filtering model[J]. Journal of physics: conference series, 2021, 2024(1): 012045.
[14] NAJAFI F, PARVIN H, MIRZAIE K, et al. Dependability‐based cluster weighting in clustering ensemble[J]. Statistical analysis and data mining: the ASA data science journal, 2020, 13(2): 151–164.
[15] JI Xia, LIU Shuaishuai, ZHAO Peng, et al. Clustering ensemble based on sample’s certainty[J]. Cognitive computation, 2021, 13(3): 1034–1046.
[16] WU Junjie, LIU Hongfu, XIONG Hui, et al. K-means-based consensus clustering: a unified view[J]. IEEE transactions on knowledge and data engineering, 2015, 27(1): 155–169.
[17] TAO Zhiqiang, LIU Hongfu, FU Yun. Simultaneous clustering and ensemble[C]//The 31st AAAI Conference on Artificial Intelligence. San Francisco: AAAI, 2017: 1546-1552.
[18] ZHONG Caiming, HU Lianyu, YUE Xiaodong, et al. Ensemble clustering based on evidence extracted from the co-association matrix[J]. Pattern recognition, 2019, 92(8): 93–106.
[19] 徐森, 皋军, 花小朋, 等. 一种改进的自适应聚类集成选择方法[J]. 自动化学报, 2018, 44(11): 2103–2112
XU Sen, GAO Jun, HUA Xiaopeng, et al. An improved adaptive cluster ensemble selection approach[J]. ACTA automatica sinica, 2018, 44(11): 2103–2112
[20] HUANG Dong, LAI Jianhuang, WANG Changdong. Combining multiple clusterings via crowd agreement estimation and multi-granularity link analysis[J]. Neurocomputing, 2015, 170: 240–250.
[21] BAI Liang, LIANG Jiye, DU Hangyuan, et al. An information-theoretical framework for cluster ensemble[J]. IEEE transactions on knowledge and data engineering, 2019, 31(8): 1464–1477.
[22] WAN Haowen, NING Bo, TAO Xiaoyu, et al. Artificial intelligence in China[M]. Singapore: Springer, 2020: 622-628.
[23] DOMENICONI C, AL-RAZGAN M. Weighted cluster ensembles: methods and analysis[J]. ACM transactions on knowledge discovery from data, 2009, 2(4): 1–40.
[24] IAM-ON N, BOONGOEN T, GARRETT S, et al. A link-based approach to the cluster ensemble problem[J]. IEEE transactions on pattern analysis and machine Intelligence, 2011, 33(12): 2396–2409.
[25] HUANG Dong, WANG Changdong, LAI Jianhuang. Locally weighted ensemble clustering[J]. IEEE transactions on cybernetics, 2018, 48(5): 1460–1473.
[26] VO C T N, NGUYEN P H. A weighted object-cluster association-based ensemble method for clustering undergraduate students[C]//Asian Conference on Intelligent Information and Database Systems. Cham: Springer, 2018: 587-598.
[27] LI Feijiang, QIAN Yuhua, WANG Jieting, et al. Cluster’s quality evaluation and selective clustering ensemble[J]. ACM transactions on knowledge discovery from data, 2018, 12(5): 1–27.
[28] RASHIDI F, NEJATIAN S, PARVIN H, et al. Diversity based cluster weighting in cluster ensemble: an information theory approach[J]. Artificial intelligence review, 2019, 52: 1341–1368.
[29] BANERJEE A, PUJARI A K, RANI PANIGRAHI C, et al. A new method for weighted ensemble clustering and coupled ensemble selection[J]. Connection Science, 2021, 33(3): 623–644.
[30] 邵长龙, 孙统风, 丁世飞. 基于信息熵加权的集成聚类算法[J]. 南京大学学报(自然科学版), 2021, 57(2): 189–196
SHAO Changlong, SUN Tongfeng, DING Shifei. Ensemble clustering based on information entropy weighted[J]. Journal of Nanjing University (natural science edition), 2021, 57(2): 189–196
[31] ZHONG Caiming, YUE Xiaodong, ZHANG Zehua, et al. A clustering ensemble: two-level-refined co-association matrix with path-based transformation[J]. Pattern recognition, 2015, 48(8): 2699–2709.
[32] LI Feijiang, QIAN Yuhua, WANG Jieting, et al. Clustering ensemble based on sample’s stability[J]. Artificial intelligence, 2019, 273: 37–55.
[33] REN Yazhou, DOMENICONI C, ZHANG Guoji, et al. Weighted-object ensemble clustering: methods and analysis[J]. Knowledge and information systems, 2017, 51(2): 661–689.
[34] 武永亮, 赵书良, 李长镜, 等. 基于TF-IDF和余弦相似度的文本分类方法[J]. 中文信息学报, 2017, 31(5): 138–145
WU Yongliang, ZHAO Shuliang, LI Changjing, et al. Text classification method based on TF-IDF and cosine similarity[J]. Journal of Chinese information processing, 2017, 31(5): 138–145
[35] THENMOZHI D, KANNAN K, ARAVINDAN C. A text similarity approach for precedence retrieval from legal documents[C]//FIRE (Working Notes). Bangalore: CEUR Workshop Proceedings, 2017: 90-91.
[36] 刘梦迪, 梁循. 基于偏旁部首知识表示学习的汉字字形相似度计算方法[J]. 中文信息学报, 2021, 35(12): 47–59
LIU Mengdi, LIANG Xun. A method of Chinese character glyph similarity calculation[J]. Journal of Chinese information processing, 2021, 35(12): 47–59
[37] HAN E-H, BOLEY D, GINI M, et al. WebACE: a web agent for document categorization and exploration[C]//The 2nd International Conference on Autonomous Agents. Minneapolis: ACM, 1998: 408-415.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems