[1]CHENG Yan,HU Jiansheng,ZHAO Songhua,et al.Aspect-level sentiment classification model combining Transformer and interactive attention network[J].CAAI Transactions on Intelligent Systems,2024,19(3):728-737.[doi:10.11992/tis.202303016]
Copy

Aspect-level sentiment classification model combining Transformer and interactive attention network

References:
[1] PONTIKI M, GALANIS D, PAVLOPOULOS J, et al. SemEval-2014 task 4: aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014). Dublin: Association for Computational Linguistics, 2014: 27–35.
[2] LIU Bing. Sentiment analysis and opinion mining[J]. Synthesis lectures on human language technologies, 2012, 5(1): 1–167.
[3] DENG Dong, JING Liping, YU Jian, et al. Sentiment lexicon construction with hierarchical supervision topic model[J]. IEEE/ACM transactions on audio, speech, and language processing, 2019, 27(4): 704–718.
[4] PANG Bo, LEE L, VAITHYANATHAN S. Thumbs up? : sentiment classification using machine learning techniques[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing - EMNLP ’02. Morristown: Association for Computational Linguistics, 2002: 79–86.
[5] JIANG Long, YU Mo, ZHOU Ming, et al. Target-dependent Twitter sentiment classification[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1. Portland: ACM, 2011: 151–160.
[6] TANG D, QIN B, FENG X, et al. Effective LSTMs for Target-Dependent Sentiment Classification[C]//Proceedings of the 26th International Conference on Computational Linguistics. Stroudsburg: ACL, 2016: 3298–3307.
[7] MA Yukun, PENG Haiyun, KHAN T, et al. Sentic LSTM: a hybrid network for targeted aspect-based sentiment analysis[J]. Cognitive computation, 2018, 10(4): 639–650.
[8] GU S, ZHANG L, HOU Y, et al. A position-aware bidirectional attention network for aspect-level sentiment analysis[C]//Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg: ACL, 2018: 774–784.
[9] TANG Duyu, QIN Bing, LIU Ting. Aspect level sentiment classification with deep memory network[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016: 214–224.
[10] XUE Wei, LI Tao. Aspect based sentiment analysis with gated convolutional networks[EB/OL]. (2018-05-18)[2023-03-08]. http://arxiv.org/abs/1805.07043.
[11] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017: 6000–6010.
[12] CHEN Peng, SUN Zhongqian, BING Lidong, et al. Recurrent attention network on memory for aspect sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2017: 452–461.
[13] WANG Yequan, HUANG Minlie, ZHU Xiaoyan, et al. Attention-based LSTM for aspect-level sentiment classification[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2016: 606–615.
[14] MA Dehong, LI Sujian, ZHANG Xiaodong, et al. Interactive attention networks for aspect-level sentiment classification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: ACM, 2017: 4068–4074.
[15] SONG Youwei, WANG Jiahai, JIANG Tao, et al. Attentional encoder network for targeted sentiment classification[EB/OL]. (2019–02–09)[2023–03–08]. http://arxiv.org/abs/1902.09314.
[16] XU Qiannan, ZHU Li, DAI Tao, et al. Aspect-based sentiment classification with multi-attention network[J]. Neurocomputing, 2020, 388(C): 135–143.
[17] 肖宇晗, 林慧苹, 汪权彬, 等. 基于双特征嵌套注意力的方面词情感分析算法[J]. 智能系统学报, 2021, 16(1): 142–151
XIAO Yuhan, LIN Huiping, WANG Quanbin, et al. An algorithm for aspect-based sentiment analysis based on dual features attention-over-attention[J]. CAAI transactions on intelligent systems, 2021, 16(1): 142–151
[18] 曾义夫, 蓝天, 吴祖峰, 等. 基于双记忆注意力的方面级别情感分类模型[J]. 计算机学报, 2019, 42(8): 1845–1857
ZENG Yifu, LAN Tian, WU Zufeng, et al. Bi-memory based attention model for aspect level sentiment classification[J]. Chinese journal of computers, 2019, 42(8): 1845–1857
[19] ZENG Biqing, YANG Heng, XU Ruyang, et al. LCF: a local context focus mechanism for aspect-based sentiment classification[J]. Applied sciences, 2019, 9(16): 3389.
[20] PENG Haiyun, MA Yukun, LI Yang, et al. Learning multi-grained aspect target sequence for Chinese sentiment analysis[J]. Knowledge based systems, 2018, 148: 167–176.
[21] ZHAO Yanyan, QIN Bing, LIU Ting. Creating a fine-grained corpus for Chinese sentiment analysis[J]. IEEE intelligent systems, 2015, 30(1): 36–43.
[22] LI Shen, ZHAO Zhe, HU Renfen, et al. Analogical reasoning on Chinese morphological and semantic relations[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). Stroudsburg: Association for Computational Linguistics, 2018: 138–143.
[23] FAN Feifan, FENG Yansong, ZHAO Dongyan. Multi-grained attention network for aspect-level sentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: Association for Computational Linguistics, 2018: 3433–3442.
[24] LI Xin, BING Lidong, LAM W, et al. Transformation networks for target-oriented sentiment classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: Association for Computational Linguistics, 2018: 946–956.
[25] CHEN F, YUAN Z, HUANG Y. Multi-source data fusion for aspect-level sentiment classification[J]. Knowledge-based systems, 2020, 187: 104831.
[26] ZENG Jiandian, LIU Tianyi, JIA Weijia, et al. Relation construction for aspect-level sentiment classification[J]. Information sciences, 2022, 586: 209–223.
[27] VASWANI A, BENGIO S, BREVDO E, et al. Tensor2Tensor for neural machine translation[C]//Proceedings of the 13th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track). Boston: Association for Machine Translation in the Americas, 2018: 193–199.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems