[1]LYU Jia,QIU Xiaolong.A noisy label deep learning algorithm based on K-means clustering and feature space augmentation[J].CAAI Transactions on Intelligent Systems,2024,19(2):267-277.[doi:10.11992/tis.202303014]
Copy

A noisy label deep learning algorithm based on K-means clustering and feature space augmentation

References:
[1] ZHANG Jing, WU Xindong, SHENG V S. Learning from crowdsourced labeled data: a survey[J]. Artificial intelligence review, 2016, 46(4): 543–576.
[2] 伏博毅, 彭云聪, 蓝鑫, 等. 基于深度学习的标签噪声学习算法综述[J]. 计算机应用, 2023, 43(3): 674–684
FU Boyi, PENG Yuncong, LAN Xin, et al. Survey of label noise learning algorithms based on deep learning[J]. Journal of computer applications, 2023, 43(3): 674–684
[3] HAN Bo, YAO Quanming, YU Xingrui, et al. Co-teaching: robust training of deep neural networks with extremely noisy labels[C]//Advances in Neural Information Processing Systems. Montreal: NIPS, 2018: 1602-1613.
[4] YU Xingrui, HAN Bo, YAO Jiangchao, et al. How does disagreement help generalization against label corruption [EB/OL]. (2019-01-14)[2022-12-25]. https://arxiv.org/abs/1901.04215.pdf.
[5] WEI Hongxin, FENG Lei, CHEN Xiangyu, et al. Combating noisy labels by agreement: a joint training method with co-regularization[C]//2020 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2020: 13723-13732.
[6] LI Junnan, SOCHER R, HOI S C H. DivideMix: learning with noisy labels as semi-supervised learning[EB/OL]. (2020-02-18)[2022-12-25]. https://arxiv.org/abs/2002.07394.pdf.
[7] CORDEIRO F R, SACHDEVA R, BELAGIANNIS V, et al. LongReMix: robust learning with high confidence samples in a noisy label environment[J]. Pattern recognition, 2023, 133(1): 565–581.
[8] KARIM N, KHALID U, ESMAEILI A, et al. CNLL: a semi-supervised approach for continual noisy label learning[C]//2022 IEEE Conference on Computer Vision and Pattern Recognition Workshops. New Orleans: IEEE, 2022: 3877-3887.
[9] ZAHEER M Z, LEE Jinha, ASTRID M, et al. Cleaning label noise with clusters for minimally supervised anomaly detection[EB/OL]. (2021-04-30)[2022-12-25]. https://arxiv.org/abs/2104.14770.pdf.
[10] CHENG Hao, ZHU Zhaowei, LI Xingyu, et al. Learning with instance-dependent label noise: a sample sieve appro-ach[EB/OL]. (2020-10-05)[2022-12-25]. https://arxiv.org/abs/2010.02347.pdf.
[11] ZHANG Hongyi, CISSE M, DAUPHIN Y N, et al. Mixup: beyond empirical risk minimization[EB/OL]. (2018-04-27)[2022-12-25]. https://arxiv.org/abs/1710.09412.pdf.
[12] LI Boyi, WU F, LIM S N, et al. On feature normalization and data augmentation[C]//2021 IEEE Conference on Computer Vision and Pattern Recognition. Kuala Lumpur: IEEE, 2021: 12378-12387.
[13] BERTHELOT D, RAFFEL C, ROY A, et al. Understanding and improving interpolation in autoencoders via an adversarial regularizer[EB/OL]. (2018-07-23)[2022-12-.25]. https://arxiv.org/abs/1807.07543.pdf.
[14] SOHN K, BERTHELOT D, CARLINI N, et al. Fixmatch: simplifying semi-supervised learning with consistency and confidence[C]//Advances in Neural Information Processing Systems. Addis Ababa: NIPS, 2020: 596-608.
[15] LIU Defu, ZHAO Jiayi, WU Jinzhao, et al. Multi-category classification with label noise by robust binary loss[J]. Neurocomputing, 2022, 482(16): 14–26.
[16] WU Songhua, XIA Xiaobo, LIU Tongliang, et al. Class2Simi: a noise reduction perspective on learning with noisy labels[C]//International Conference on Machine Learning. London: ACM, 2021: 11285-11295.
[17] SHARMA N, JAIN V, MISHRA A. An analysis of convolutional neural networks for image classification[J]. Procedia computer science, 2018, 132(9): 377–384.
[18] DENG L. The mnist database of handwritten digit images for machine learning research[J]. IEEE signal processing magazine, 2012, 29(6): 141–142.
[19] TAN C, XIA J, WU L, et al. Co-learning: Learning from noisy labels with self-supervision[C]//Proceedings of the 29th ACM International Conference on Multimedia. Chengdu: ACM, 2021: 1405-1413.
[20] PATRINI G, ROZZA A, MENON A K, et al. Making deep neural networks robust to label noise: a loss correction approach[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 2233-2241.
[21] ZHANG Z, SABUNCU M. Generalized cross entropy loss fortraining deep neural networks with noisy labels[C]//Avances in Neural Information Processing Systems. Montreal: NIPS, 2018: 11400-11411.
[22] ARAZO E, ORTEGO D, ALBERT P, et al. Unsupervised label noise modeling and loss correction[C]//International Conference on Machine Learning. Los Angeles: ACM, 2019: 312-321.
[23] WANG Zhuowei, JIANG Jing, HAN Bo, et al. SemiNLL: a framework of noisy-label learning by semi-supervised learning[EB/OL]. (2020-11-02)[2022-12-27]. https://arxiv.org/abs/2012.00925.pdf.
[24] ZHOU Xiong, LIU Xianming, WANG Chenyang, et al. Learning with noisy labels via sparse regularization[C]//2021 IEEE International Conference on Computer Vision. Montreal: IEEE, 2022: 72-81.
[25] FENG Lei, SHU Senlin, LIN Zhuoyi, et al. Can cross entropy loss be robust to label noise[C]//Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence. Yokohama: ACM, 2020: 2206-2212.
[26] YI Li, LIU Sheng, SHE Qi, et al. On learning contrastive representations for learning with noisy labels[C]//2022 IEEE Conference on Computer Vision and Pattern Recognition. New Orleans: IEEE, 2022: 16661-16670.
[27] MENON A K, RAWAT A S, REDDI S J, et al. Can gradient clipping mitigate label noise[C]//International Conference on Learning Representations. Addis Ababa: ACM, 2020: 6204-6231.
[28] SONG H, KIM M, LEE J G. Selfie: Refurbishing unclean samples for robust deep learning[C]//International Conference on Machine Learning, Los Angeles: ACM, 2019: 5907-5915.
[29] ZHANG Yikai, ZHENG Songzhu, WU Pengxiang, et al. Learning with feature dependent label noise: a progressiv-e approach[EB/OL]. (2021-05-27)[2022-12-25]. https://ar-xiv.org/abs/2103.07756.pdf.
[30] CHEN Yingyi, SHEN Xi, HU S X, et al. Boosting co-teaching with compression regularization for label noise[C]//2021 IEEE Conference on Computer Vision and Pattern Recognition Kuala Lumpur, IEEE, 2021: 2682-2686.
[31] RIPPEL O, GELBART M, ADAMS R. Learning ordered representations with nested dropout[C]//International Conference on Machine Learning. Beijing: ACM, 2014: 1746-1754.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems