[1]KANG Bo,QIAN Yi,WEN Yimin.Image sentiment recognition based on the abstract relational scene graph network[J].CAAI Transactions on Intelligent Systems,2024,19(2):335-343.[doi:10.11992/tis.202303009]
Copy

Image sentiment recognition based on the abstract relational scene graph network

References:
[1] ZHAO Sicheng, GAO Yue, DING Guiguang, et al. Real-time multimedia social event detection in microblog[J]. IEEE transactions on cybernetics, 2018, 48(11): 3218–3231.
[2] 吴佩谕, 黄远水. 旅游照片的符号属性对旅游意向的影响研究: 以微信朋友圈旅游照片为例[J]. 资源开发与市场, 2019, 35(7): 993–1000
WU Peiyu, HUANG Yuanshui. Study on influence of symbolic attributes of travel photos on travel intention—taking travel photos of WeChat friends circle as an example[J]. Resource development & market, 2019, 35(7): 993–1000
[3] ZHAO Sicheng, YAO Xingxu, YANG Jufeng, et al. Affective image content analysis: two decades review and new perspectives[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(10): 6729–6751.
[4] 赵思成, 姚鸿勋. 图像情感计算综述[J]. 智能计算机与应用, 2017, 7(1): 1–5
ZHAO Sicheng, YAO Hongxun. A survey of image emotion computing[J]. Intelligent computer and applications, 2017, 7(1): 1–5
[5] 王仁武, 孟现茹. 图片情感分析研究综述[J]. 图书情报知识, 2020(3): 119–127
WANG Renwu, MENG Xianru. Review of image sentiment analysis[J]. Documentation, information & knowledge, 2020(3): 119–127
[6] 姚鸿勋, 邓伟洪, 刘洪海, 等. 情感计算与理解研究发展概述[J]. 中国图象图形学报, 2022, 27(6): 2008–2035
YAO Hongxun, DENG Weihong, LIU Honghai, et al. An overview of research development of affective computing and understanding[J]. Journal of image and graphics, 2022, 27(6): 2008–2035
[7] PANG Lei, ZHU Shiai, NGO C W. Deep multimodal learning for affective analysis and retrieval[J]. IEEE transactions on multimedia, 2015, 17(11): 2008–2020.
[8] GUO Longteng, LIU Jing, YAO Peng, et al. MSCap: multi-style image captioning with unpaired stylized text[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 4199-4208.
[9] ZHAO Wentian, WU Xinxiao, ZHANG Xiaoxun. MemCap: memorizing style knowledge for image captioning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12984-12992.
[10] FENG Junlong, ZHAO Jianping. Improving stylized caption compatibility with image content by integrating region context[J]. Neural computing and applications, 2022, 34(6): 4151–4163.
[11] LI Zuhe, FAN Yangyu, JIANG Bin, et al. A survey on sentiment analysis and opinion mining for social multimedia[J]. Multimedia tools and applications, 2019, 78(6): 6939–6967.
[12] MACHAJDIK J, HANBURY A. Affective image classification using features inspired by psychology and art theory[C]//Proceedings of the 18th ACM International Conference on Multimedia. New York: ACM, 2010: 83-92.
[13] ZHAO Sicheng, GAO Yue, JIANG Xiaolei, et al. Exploring principles-of-art features for image emotion recognition[C]//Proceedings of the 22nd ACM iNternational Conference on Multimedia. New York: ACM, 2014: 47-56.
[14] BORTH D, JI Rongrong, CHEN Tao, et al. Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]//Proceedings of the 21st ACM International Conference on Multimedia. New York: ACM, 2013: 223-232.
[15] CHEN Tao, YU F X, CHEN Jiawei, et al. Object-based visual sentiment concept analysis and application[C]//Proceedings of the 22 nd ACM International Conference on Multimedia. New York: ACM, 2014: 367-376.
[16] RAO Tianrong, XU Min, LIU Huiying, et al. Multi-scale blocks based image emotion classification using multiple instance learning[C]//2016 IEEE International Conference on Image Processing. Phoenix: IEEE, 2016: 634-638.
[17] CHEN Tao, BORTH D, DARRELL T, et al. DeepSentiBank: visual sentiment concept classification with deep convolutional neural networks[EB/OL]. (2014-10-30)[2022-01-01]. https://arxiv.org/abs/1410.8586.pdf.
[18] YOU Quanzeng, LUO Jiebo, JIN Hailin, et al. Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Austin: AAAI, 2015: 381-388.
[19] RAO Tianrong, LI Xiaoxu, XU Min. Learning multi-level deep representations for image emotion classification[J]. Neural processing letters, 2020, 51(3): 2043–2061.
[20] ZHANG Hao, XU Dan, LUO Gaifang, et al. Learning multi-level representations for affective image recognition[J]. Neural computing and applications, 2022, 34(16): 14107–14120.
[21] 李志义, 许洪凯, 段斌. 基于深度学习CNN模型的图像情感特征抽取研究[J]. 图书情报工作, 2019, 63(11): 96–107
LI Zhiyi, XU Hongkai, DUAN Bin. Research on image emotion feature extraction based on deep learning CNN model[J]. Library and information service, 2019, 63(11): 96–107
[22] 蔡国永, 贺歆灏, 储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报(工学版), 2020, 50(4): 8–13
CAI Guoyong, HE Xinhao, CHU Yangyang. Visual sentiment analysis based on spatial attention mechanism and convolutional neural network[J]. Journal of Shandong University (engineering science edition), 2020, 50(4): 8–13
[23] 白茹意, 郭小英, 贾春花. 基于特征融合的小样本抽象画图像情感预测[J]. 计算机应用, 2020, 40(8): 2207–2213
BAI Ruyi, GUO Xiaoying, JIA Chunhua. Sentiment prediction of small sample abstract painting image based on feature fusion[J]. Journal of computer applications, 2020, 40(8): 2207–2213
[24] 蔡国永, 储阳阳. 基于双注意力多层特征融合的视觉情感分析[J]. 计算机工程, 2021, 47(9): 227–234
CAI Guoyong, CHU Yangyang. Visual sentiment analysis based on multi-level features fusion of dual attention[J]. Computer engineering, 2021, 47(9): 227–234
[25] YANG Jufeng, SHE Dongyu, SUN Ming, et al. Visual sentiment prediction based on automatic discovery of affective regions[J]. IEEE transactions on multimedia, 2018, 20(9): 2513–2525.
[26] XIONG Haitao, LIU Qing, SONG Shaoyi, et al. Region-based convolutional neural network using group sparse regularization for image sentiment classification[J]. EURASIP journal on image and video processing, 2019, 2019(1): 1–9.
[27] YANG Jingyuan, GAO Xinbo, LI Leida, et al. SOLVER: scene-object interrelated visual emotion reasoning network[J]. IEEE transactions on image processing, 2021, 30: 8686–8701.
[28] ZHAO Sicheng, DING Guiguang, GAO Yue, et al. Discrete probability distribution prediction of image emotions with shared sparse learning[J]. IEEE transactions on affective computing, 2020, 11(4): 574–587.
[29] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[30] ANDERSON P, HE Xiaodong, BUEHLER C, et al. Bottom-up and top-down attention for image captioning and visual question answering[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6077-6086.
[31] LI Kunpeng, ZHANG Yulun, LI Kai, et al. Visual semantic reasoning for image-text matching[C]//IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 4653-4661.
[32] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2016-11-03)[2022-01-01]. https://arxiv.org/abs/1609.02907.pdf.
[33] YOU Quanzeng, LUO Jiebo, JIN Hailin, et al. Building a large scale dataset for image emotion recognition: the fine print and the benchmark[J]. Proceedings of the AAAI conference on artificial intelligence, 2016, 30(1): 308–314.
[34] PENG Kuanchuan, SADOVNIK A, GALLAGHER A, et al. Where do emotions come from? Predicting the emotion stimuli map[C]//2016 IEEE International Conference on Image Processing. Phoenix: IEEE, 2016: 614-618.
[35] KRISHNA R, ZHU Yuke, GROTH O, et al. Visual genome: connecting language and vision using crowdsourced dense image annotations[J]. International journal of computer vision, 2017, 123(1): 32–73.
[36] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009: 248-255.
[37] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-12-23)[2022-01-01]. https://arxiv.org/abs/1409.1556.pdf.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems