[1]HUANG Yueyu,ZHOU Hang,CHEN Yehong,et al.TEDS underbody fault location algorithm in virtue of weak texture matching[J].CAAI Transactions on Intelligent Systems,2024,19(3):670-678.[doi:10.11992/tis.202303006]
Copy

TEDS underbody fault location algorithm in virtue of weak texture matching

References:
[1] 刘洋. 关于提升TEDS故障预警准确率的研究[J]. 轨道交通装备与技术, 2019(3): 18–19
LIU Yang. Improving the accuracy of fault early warning for TEDS system[J]. Rail transportation equipment and technology, 2019(3): 18–19
[2] 刘彬. 动车组运行故障图像检测系统(TEDS)运用研究与思考[J]. 中国铁路, 2017(12): 61–65
LIU Bin. Research and thought on trouble of moving EMU detection system(TEDS)[J]. China railway, 2017(12): 61–65
[3] 陈伯施. 科技赋能轨道交通移动装备发展[J]. 铁道车辆, 2021, 59(1): 1–6
CHEN Boshi. Development of rail transit mobile equipment empowered by technology[J]. Rolling stock, 2021, 59(1): 1–6
[4] 杨凯. TEDS动车组故障图像数据库建立技术研究[J]. 铁道机车车辆, 2020, 40(6): 38–42,81
YANG Kai. TEDS EMU fault image database[J]. Railway locomotive & car, 2020, 40(6): 38–42,81
[5] 王锐. 浅谈动车组运行故障动态图像检测系统(TEDS)实践与故障应急处理办法[J]. 工业设计, 2015(8): 80–81
WANG Rui. Discussion on TEDS practice and fault emergency treatment methods[J]. Industrial design, 2015(8): 80–81
[6] 彭丹, 周航. 基于轨边图像SURF特征的动车底部件异常检测算法[J]. 信息系统工程, 2016(2): 127–128
PENG Dan, ZHOU Hang. Anomaly detection algorithm of moving car bottom parts based on SURF feature of rail edge image[J]. China CIO news, 2016(2): 127–128
[7] 彭丹. 基于轨边图像SURF特征的动车底部部件异常检测算法[D]. 北京: 北京交通大学, 2016.
PENG Dan. An abnormal detection algorithm of the EMU bottom based on the SURF features of the track-side image[D]. Beijing: Beijing Jiaotong University, 2016.
[8] BAY H, TUYTELAARS T, VAN GOOL L. SURF: speeded up robust features[M]//Computer Vision – ECCV 2006. Berlin: Springer Berlin Heidelberg, 2006: 404-417.
[9] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2): 91–110.
[10] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB: an efficient alternative to SIFT or SURF[C]//2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 2564-2571.
[11] ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection[M]//Computer Vision -ECCV 2006. Berlin: Springer Berlin Heidelberg, 2006: 430–443.
[12] CALONDER M, LEPETIT V, STRECHA C, et al. BRIEF: binary robust independent elementary features[C]//European Conference on Computer Vision. Berlin: Springer, 2010: 778–792.
[13] 丁国绅, 乔延利, 易维宁, 等. 基于光谱图像空间的改进SIFT特征提取与匹配[J]. 北京理工大学学报, 2022, 42(2): 192–199
DING Guoshen, QIAO Yanli, YI Weining, et al. Improved SIFT feature extraction and matching based on spectral image space[J]. Transactions of Beijing institute of technology, 2022, 42(2): 192–199
[14] 胡旻涛, 彭勇, 徐赟. 基于改进SURF的快速图像配准算法[J]. 传感器与微系统, 2017, 36(11): 151–153
HU Mintao, PENG Yong, XU Yun. Fast image matching algorithm based on improved SURF[J]. Transducer and microsystem technologies, 2017, 36(11): 151–153
[15] WEI Yanhui, YANG Pengfei, XU Lixue, et al. An improved SURF algorithm based on gradient and amplitude pre-computation[C]//2019 IEEE International Conference on Mechatronics and Automation. Tianjin: IEEE, 2019: 456–462.
[16] HAN Leng, SUN Xia, WANG Jiawei, et al. Research on SURF feature matching algorithm based on lab color space[C]//2020 3rd International Conference on Robotics, Control and Automation Engineering. Chongqing: IEEE, 2020: 116–121.
[17] 洪鹏程, 唐垚, 任重. 基于SURF分割圆形区域的图像拼接[J]. 电讯技术, 2021, 61(11): 1424–1430
HONG Pengcheng, TANG Yao, REN Zhong. Image stitching based on SURF segmentation of circular regions[J]. Telecommunication engineering, 2021, 61(11): 1424–1430
[18] 张学峰, 马行, 穆春阳. 基于四叉树的SIFT与K-D树融合的图像匹配研究[J]. 电子测量技术, 2021, 44(22): 121–127
ZHANG Xuefeng, MA Xing, MU Chunyang. Research on image matching based on quadtree fusion of SIFT and K-D tree[J]. Electronic measurement technology, 2021, 44(22): 121–127
[19] WANG Shuoshi, LI Lin. Urban street image matching method based on improved SURF algorithm[C]//Proceedings of 2018 Chinese Intelligent Systems Conference. Singapore: Springer, 2019: 135–144.
[20] LEUTENEGGER S, CHLI M, SIEGWART R Y. BRISK: binary robust invariant scalable keypoints[C]//2011 International Conference on Computer Vision. Barcelona: IEEE, 2011: 2548–2555.
[21] 章盛, 李培华, 钱名思, 等. 融入曲率尺度空间算法的图像配准方法[J]. 激光与红外, 2021, 51(3): 379–387
ZHANG Sheng, LI Peihua, QIAN Mingsi, et al. Image registration method based on curvature scale space algorithm[J]. Laser & infrared, 2021, 51(3): 379–387
[22] RAMYA P P, AJAY J. Object recognition and classification based on improved bag of features using surf and mser local feature extraction[C]//2019 1st International Conference on Innovations in Information and Communication Technology. Chennai: IEEE, 2019: 1–4.
[23] 陈伟, 刘宇, 王亚伟, 等. 基于改进的FAST-SURF快速图像拼接算法[J]. 应用光学, 2021, 42(4): 636–642
CHEN Wei, LIU Yu, WANG Yawei, et al. Fast image stitching algorithm based on improved FAST-SURF[J]. Journal of applied optics, 2021, 42(4): 636–642
[24] 李国竣, 徐延海, 段杰文, 等. 利用局部自适应阈值方法提取ORB-SLAM特征点[J]. 测绘通报, 2021(9): 32–36,48
LI Guojun, XU Yanhai, DUAN Jiewen, et al. ORB-SLAM method based on local adaptive threshold extraction feature points[J]. Bulletin of surveying and mapping, 2021(9): 32–36,48
[25] 毛敏. 基于宽基线的弱纹理特征点提取与描述方法研究[D]. 上海: 东华大学, 2014.
MAO Min. Research on Point Detector and Descriptor for Textureless Object Surface Based on Wide Baseline Stereo[D]. Shanghai: Donghua University, 2014.
[26] 马东岭, 毛力波, 吴鼎辉, 等. 一种顾及纹理特征的自适应密集匹配方法[J]. 测绘科学, 2022, 47(2): 70–78,101
MA Dongling, MAO Libo, WU Dinghui, et al. An adaptive dense matching method considering texture features[J]. Science of surveying and mapping, 2022, 47(2): 70–78,101
[27] 程鹏飞, 周修庄, 唐玲, 等. 一种面向弱纹理图像的特征点描述子[J]. 北京邮电大学学报, 2021, 44(6): 13–19
CHENG Pengfei, ZHOU Xiuzhuang, TANG Ling, et al. A feature point descriptor for texture-less images[J]. Journal of Beijing University of Posts and Telecommunications, 2021, 44(6): 13–19
[28] 章毓晋. 图像工程[M]. 4版. 北京: 清华大学出版社, 2018: 257-258.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems