[1]LIU Wanjun,JIANG Lan,QU Haicheng,et al.MRI brain tumor image segmentation by fusing CNN and Transformer[J].CAAI Transactions on Intelligent Systems,2024,19(4):1007-1015.[doi:10.11992/tis.202301016]
Copy

MRI brain tumor image segmentation by fusing CNN and Transformer

References:
[1] OSTROM Q T, BAUCHET L, DAVIS F G, et al. The epidemiology of glioma in adults: a “state of the science” review[J]. Neuro-oncology, 2014, 16(7): 896–913.
[2] MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark (BRATS)[J]. IEEE transactions on medical imaging, 2014, 34(10): 1993–2024.
[3] HUANG Huimin, LIN Lanfen, TONG Ruofeng, et al. Unet 3+: a full-scale connected unet for medical image segmentation[C]//ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing. Barcelona: IEEE, 2020: 1055-1059.
[4] NGUYEN T, HUA B S, LE N. 3D-UCaps: 3D capsules unet for volumetric image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2021: 548-558.
[5] LOU A, GUAN S, LOEW M. DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation[C]//Medical Imaging 2021: Image Processing. Virtual Online: SPIE, 2021: 758-768.
[6] ?I?EK ?, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//International Conference on Medical Image Computing and Computer-assisted Intervention. Cham: Springer, 2016: 424-432.
[7] MYRONENKO A. 3D MRI brain tumor segmentation using autoencoder regularization[C]//International MICCAI Brainlesion Workshop. Cham: Springer, 2019: 311-320.
[8] CHEN Chen, LIU Xiaopeng, DING Meng, et al. 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2019: 184-192.
[9] 张睦卿, 韩雨童, 陈柏年, 等. 基于多尺度伪影生成对抗网络的磁共振成像脑肿瘤分割方法[J]. 光子学报, 2023, 52(8): 194–205
ZHANG Muqing, HAN Yutong, CHEN Bonian, et al. Magnetic resonance imaging brain tumor segmentation using multiscale ghost generative adversarial network[J]. Acta photonica sinica, 2023, 52(8): 194–205
[10] VALANARASU J M J, SINDAGI V A, HACIHALILOGLU I, et al. KiU-Net: overcomplete convolutional architectures for biomedical image and volumetric segmentation[J]. IEEE transactions on medical imaging, 2021, 41(4): 965–976.
[11] ISENSEE F, J?GER P F, FULL P M, et al. NNU-Net for brain tumor segmentation[C]//International MICCAI Brainlesion Workshop. Cham: Springer, 2021: 118-132.
[12] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale [EB/OL]. (2021-06-03)[2023-01-16]. https:// arxiv.org/pdf/2010.11929.pdf.
[13] HATAMIZADEH A, TANG Yuchen, NATH V, et al. Unetr: transformers for 3d medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Waikoloa: IEEE. 2022: 574-584.
[14] VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical transformer: gated axial-attention for medical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2021: 36-46.
[15] JIANG Yun, ZHANG Yuan, LIN Xin, et al. SwinBTS: a method for 3D multimodal brain tumor segmentation using swin transformer[J]. Brain sciences, 2022, 12(6): 797.
[16] CAO Hu, WANG Yueyue, CHEN J, et al. Swin-Unet: Unet-like pure transformer for medical image segmentation[EB/OL]. (2021-05-12)[2023-01-16]. https://arxiv.org/pdf/2105.05537.pdf.
[17] LIN Ailiang, CHEN Bingzhi, XU Jiayu, et al. Ds-transunet: dual swin transformer u-net for medical image segmentation[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 1–15.
[18] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networks from overfitting[J]. The journal of machine learning research, 2014, 15(1): 1929–1958.
[19] HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. (2020-07-08)[2013-01-16]. https://arxiv.org/pdf/1606.08415v4.pdf.
[20] WANG Qilong, WU Banggu, ZHU Pengfei, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 11534-11542.
[21] MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]//2016 Fourth International Conference on 3D Vision. Stanford: IEEE, 2016: 565-571.
[22] WANG Guotai, LI Wenqi, OURSELIN S, et al. Automatic brain tumor segmentation using convolutional neural networks with test-time augmentation[C]//International MICCAI Brainlesion Workshop. Cham: Springer, 2019: 61-72.
[23] OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention u-net: Learning where to look for the pancreas[EB/OL]. (2018-05-20)[2023-01-16]. https://arxiv.org/pdf/1804.03999.pdf
[24] WANG Wenxuan, CHEN Chen, DING Meng, et al. Transbts: multimodal brain tumor segmentation using transformer[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2021: 109-119.
[25] HUANG He, YANG Guang, ZHANG Wenbo, et al. A deep multi-task learning framework for brain tumor segmentation[J]. Frontiers in oncology, 2021, 11: 690244.
[26] VADACCHINO S, MEHTA R, SEPAHVAND N M, et al. HAD-Net: a hierarchical adversarial knowledge distillation network for improved enhanced tumour segmentation without post-contrast images[EB/OL]. (2021-03-30)[2023-01-16]. https://arxiv.org/abs/2103.16617.
[27] LI Sahohua, SUI Xiuchao, LUO Xiangde, et al. Medical image segmentation using squeeze-and-expansion transformers[C]//International Joint Conference on Artificial Intelligence. Montreal: IJCAI, 2019: 61-72.
[28] XU Weijin, YANG Huihua, ZHANG Mingying, et al. Brain tumor segmentation with corner attention and high-dimensional perceptual loss[J]. Biomedical signal processing and control, 2022, 73: 103438.
[29] AKBAR A S, FATICHAH C, SUCIATI N. Single level UNet3D with multipath residual attention block for brain tumor segmentation[J]. Journal of King Saud University-computer and information sciences, 2022: 3247-3258.
[30] LIANG Junjie, YANG Cihui, ZHONG Jingting, et al. BTSwin-Unet: 3D U-shaped symmetrical swin transformer-based network for brain tumor segmentation with self-supervised pre-training[J]. Neural processing letters, 2022, 55(4): 3695–3713.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems