[1]LU Jun,LI Yang,LU Linchao.Long-distance and occluded 3D target detection algorithm[J].CAAI Transactions on Intelligent Systems,2024,19(2):259-266.[doi:10.11992/tis.202301001]
Copy

Long-distance and occluded 3D target detection algorithm

References:
[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84–90.
[2] 张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57–69
ZHANG Chi, GUO Yuan, LI Ming. Review of development and application of artificial neural network models[J]. Computer engineering and applications, 2021, 57(11): 57–69
[3] 许德刚, 王露, 李凡. 深度学习的典型目标检测算法研究综述[J]. 计算机工程与应用, 2021, 57(8): 10–25
XU Degang, WANG Lu, LI Fan. Review of typical object detection algorithms for deep learning[J]. Computer engineering and applications, 2021, 57(8): 10–25
[4] GUO Menghao, XU Tianxing, LIU Jiangjiang, et al. Attention mechanisms in computer vision: A survey[J]. Computational visual media, 2022(3): 331–368.
[5] ZHANG Suzhi, WU Yuhong, CHANG Jun. Survey of image recognition algorithms[C]//2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Chongqing: IEEE, 2020: 542-548.
[6] YUAN Xiaohui, SHI Jianfang, GU Lichuan. A review of deep learning methods for semantic segmentation of remote sensing imagery[J]. Expert systems with applications, 2021, 169: 114417.
[7] FANG Wei, SHEN Liang, CHEN Yupeng. Survey on image object detection algorithms based on deep learning[C]//SUN X, ZHANG X, XIA Z, et al. International Conference on Artificial Intelligence and Security. Cham: Springer, 2021: 468-480.
[8] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International journal of computer vision, 2013, 104(2): 154–171.
[9] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2016: 1440-1448.
[10] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137–1149.
[11] HE Kaiming, GKIOXARI G, DOLL?R P, et al. Mask R-CNN[C]//IEEE Transactions on Pattern Analysis and Machine Intelligence. [S. l. ]: IEEE, 2018: 386-397.
[12] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 779-788.
[14] XIA C, WEI P, WEI W, et al. A multilevel fusion network for 3D object detection[J]. Neurocomputing, 2021, 437(2): 107–117.
[15] WEN Lihua, JO K H. Three-attention mechanisms for one-stage 3-D object detection based on LiDAR and camera[J]. IEEE transactions on industrial informatics, 2021, 17(10): 6655–6663.
[16] SHI Shaoshuai, GUO Chaoxu, JIANG Li, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020: 10526-10535.
[17] YIN Tianwei, ZHOU Xingyi, KR?HENB?HL P. Center-based 3D object detection and tracking[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021: 11779-11788.
[18] ZHOU Yin, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 4490-4499.
[19] LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 12689-12697.
[20] LI Y, BU R, SUN M, et al. Point CNN: Convolution On X-Transformed Points[EB/OL]. (2018-01-23)[2023-10-15]. https://arxiv.org/abs/1801.07791.
[21] LI Yusheng, TIAN Yong, TIAN Jiandong. Sparse 3D point clouds segmentation considering 2D image feature extraction with deep learning[C]//Proc SPIE 11179, Eleventh International Conference on Digital Image Processing. Guangzhou: SPIE, 2019, 11179: 62-70.
[22] TANG Xu, ZHANG Huayu, MA Jingjing, et al. Supervised adaptive-RPN network for object detection in remote sensing images[C]//IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium. Waikoloa: IEEE, 2021: 2647-2650.
[23] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in neural information processing systems, 2017, 30: 6000–6010.
[24] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The international journal of robotics research, 2013, 32(11): 1231–1237.
[25] 李亚超, 熊德意, 张民. 神经机器翻译综述[J]. 计算机学报, 2018, 41(12): 2734–2755
LI Yachao, XIONG Deyi, ZHANG Min. A survey of neural machine translation[J]. Chinese journal of computers, 2018, 41(12): 2734–2755
[26] GU Fengwei, LU Jun, CAI Chengtao, et al. EANTrack: an efficient attention network for visual tracking[J]. IEEE transactions on automation science and engineering, 2023(99): 1–18.
[27] GU Fengwei, LU Jun, CAI Chengtao. RPformer: a robust parallel transformer for visual tracking in complex scenes[J]. IEEE transactions on instrumentation and measurement, 2022, 71: 1–14.
[28] 石磊, 王毅, 成颖, 等. 自然语言处理中的注意力机制研究综述[J]. 数据分析与知识发现, 2020, 4(5): 1–14
SHI Lei, WANG Yi, CHENG Ying, et al. Review of attention mechanism in natural language processing[J]. Data analysis and knowledge discovery, 2020, 4(5): 1–14
[29] 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016: 298-300.
[30] AGARAP A F. Deep learning using rectified linear units (ReLU)[EB/OL]. (2018-04-22)[2023-10-15]. https://arxiv.org/abs/1803.08375.
[31] QI C R, YI Li, SU Hao, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[J]. Advances in neural information processing systems, 2017, 30: 30–38.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems