[1]ZHAI Yongjie,WANG Jiahao,ZHANG Xin,et al.Design of automatic picking system for seedlings based on semantic segmentation visual servo[J].CAAI Transactions on Intelligent Systems,2023,18(6):1259-1267.[doi:10.11992/tis.202212026]
Copy

Design of automatic picking system for seedlings based on semantic segmentation visual servo

References:
[1] DEBNATH M, MALIK C, BISEN P. Micropropagation: a tool for the production of high quality plant-based medicines[J]. Current pharmaceutical biotechnology, 2006, 7(1): 33–49.
[2] LEE T J, ZOBAYED S, FIRMANI F, et al. A novel automated transplanting system for plant tissue culture[J]. Biosystems engineering, 2019, 181: 63–72.
[3] 翟永杰, 胡东阳, 苑朝, 等. 基于视觉伺服的蝴蝶兰种苗切割系统设计与试验[J]. 农业工程学报, 2022, 38(6): 148–156
ZHAI Yongjie, HU Dongyang, YUAN Chao, et al. Design and experiments of phalaenopsis seedling cutting system using visual servo[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(6): 148–156
[4] NING Zhengtong, LUO Lufeng, DING Xinming, et al. Recognition of sweet peppers and planning the robotic picking sequence in high-density orchards[J]. Computers and electronics in agriculture, 2022, 196: 106878.
[5] RINGDAHL O, KURTSER P, EDAN Y. Evaluation of approach strategies for harvesting robots: case study of sweet pepper harvesting[J]. Journal of intelligent & robotic systems, 2019, 95(1): 149–164.
[6] VAN H E J, HEMMING J, VAN TUIJL B A J, et al. Collision-free motion planning for a cucumber picking robot[J]. Biosystems engineering, 2003, 86(2): 135–144.
[7] WANG Guohua, YU Yabo, FENG Qingchun. Design of end-effector for tomato robotic harvesting[J]. IFAC-Papers OnLine, 2016, 49(16): 190–193.
[8] MU Longtao, LIU Yadong, CUI Yongjie, et al. Design of end-effector for kiwifruit harvesting robot experiment[C]//2017 ASABE Annual International Meeting. Washington: American Society of Agricultural and Biological Engineers, 2017.
[9] SARABU H, AHLIN K, HU Aiping. Leveraging deep learning and RGB-D cameras for cooperative apple-picking robot arms[C]// 2019 ASABE Annual International Meeting. Boston: American Society of Agricultural and Biological Engineers, 2019.
[10] 李天华, 孙萌, 丁小明, 等. 基于YOLO v4+HSV的成熟期番茄识别方法[J]. 农业工程学报, 2021, 37(21): 183–190
LI Tianhua, SUN Meng, DING Xiaoming, et al. Tomato recognition method at the ripening stage based on YOLO v4 and HSV[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(21): 183–190
[11] 孙红, 乔金博, 李松, 等. 基于深度学习的玉米拔节期冠层识别[J]. 农业工程学报, 2021, 37(21): 53–61
SUN Hong, QIAO Jinbo, LI Song, et al. Recognition of the maize canopy at the jointing stage based on deep learning[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(21): 53–61
[12] QUAN Longzhe, FENG Huaiqu, LYU Yingjie, et al. Maize seedling detection under different growth stages and complex field environments based on an improved Faster R-CNN[J]. Biosystems engineering, 2019, 184: 1–23.
[13] ZAHID A, MAHMUD M S, HE Long, et al. Technological advancements towards developing a robotic pruner for apple trees: a review[J]. Computers and electronics in agriculture, 2021, 189: 106383.
[14] LOTTES P, BEHLEY J, CHEBROLU N, et al. Robust joint stem detection and crop-weed classification using image sequences for plant-specific treatment in precision farming[J]. Journal of field robotics, 2020, 37(1): 20–34.
[15] SHI Weinan, VAN DE ZEDDE R, JIANG Huanyu, et al. Plant-part segmentation using deep learning and multi-view vision[J]. Biosystems engineering, 2019, 187: 81–95.
[16] GUO W J, LIN Yuzu, LEE N. Photosynthetic light requirements and effects of low irradiance and daylength on phalaenopsis amabilis[J]. Journal of the American society for horticultural science, 2012, 137(6): 465–472.
[17] LIN Mingju, HSU B D. Photosynthetic plasticity of Phalaenopsis in response to different light environments[J]. Journal of plant physiology, 2004, 161(11): 1259–1268.
[18] LIU Y C, TSENG K M, CHEN C C, et al. Warm-night temperature delays spike emergence and alters carbon pool metabolism in the stem and leaves of Phalaenopsis aphroide[J]. Scientia horticulturae, 2013, 161: 198–203.
[19] XU De, LU Jinyan, WANG Peng, et al. Partially decoupled image-based visual servoing using different sensitive features[J]. IEEE transactions on systems, man, and cybernetics:systems, 2017, 47(8): 2233–2243.
[20] VICENTE P, JAMONE L, BERNARDINO A. Towards markerless visual servoing of grasping tasks for humanoid robots[C]//2017 IEEE International Conference on Robotics and Automation. Singapore: IEEE, 2017: 3811-3816.
[21] CHANG W C. Robotic assembly of smartphone back shells with eye-in-hand visual servoing[J]. Robotics and computer-integrated manufacturing, 2018, 50: 102–113.
[22] 杨月全, 秦瑞康, 李福东, 等. 机器人视觉伺服控制研究进展与挑战[J]. 郑州大学学报(理学版), 2018, 50(2): 41–48
YANG Yuequan, QIN Ruikang, LI Fudong, et al. The development and challenges of studies on robot visual servo control[J]. Journal of Zhengzhou university (natural science edition), 2018, 50(2): 41–48
[23] YU Changqian, WANG Jingbo, PENG Chao, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]//European Conference on Computer Vision. Cham: Springer, 2018: 334-349.
[24] 李国进, 黄晓洁, 李修华, 等. 采用轻量级网络MobileNetV2的酿酒葡萄检测模型[J]. 农业工程学报, 2021, 37(17): 168–176,317
LI Guojin, HUANG Xiaojie, LI Xiuhua, et al. Detection model for wine grapes using MobileNetV2 lightweight network[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(17): 168–176,317
[25] 宁政通, 罗陆锋, 廖嘉欣, 等. 基于深度学习的葡萄果梗识别与最优采摘定位[J]. 农业工程学报, 2021, 37(9): 222–229
NING Zhengtong, LUO Lufeng, LIAO Jiaxin, et al. Recognition and the optimal picking point location of grape stems based on deep learning[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(9): 222–229
[26] 赵德安, 吴任迪, 刘晓洋, 等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164–173
ZHAO Dean, WU Rendi, LIU Xiaoyang, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background[J]. Transactions of the Chinese society of agricultural engineering, 2019, 35(3): 164–173
[27] YU Changqian, GAO Changxin, WANG Jingbo, et al. BiSeNet V2: bilateral network with guided aggregation for real-time semantic segmentation[J]. International journal of computer vision, 2021, 129(11): 3051–3068.
[28] CHEN L C, ZHU Yukun, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//European Conference on Computer Vision. Cham: Springer, 2018: 833-851.
[29] LI Hanchao, XIONG Pengfei, FAN Haoqiang, et al. DFANet: deep feature aggregation for real-time semantic segmentation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2020: 9514-9523.
[30] LI Gen, YUN I, KIM J, et al. DABNet: depth-wise asymmetric bottleneck for real-time semantic segmentation[EB/OL]. (2019-07-26)[2022-12-26]. https://arxiv.org/abs/1907.11357.
[31] POUDEL R P K, LIWICKI S, CIPOLLA R. Fast-SCNN: fast semantic segmentation network[EB/OL]. (2019-02-12) [2022-12-26]. https://arxiv.org/abs/1902.04502.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems