[1]WEI Zhixin,FANG Yongchun.Autonomous developmental network incorporating human cognitive modes and its application in gesture recognition[J].CAAI Transactions on Intelligent Systems,2023,18(1):144-152.[doi:10.11992/tis.202212002]
Copy

Autonomous developmental network incorporating human cognitive modes and its application in gesture recognition

References:
[1] FENG Zhao, WU Jinlong, NI Taile. Research and application of multifeature gesture recognition in human-computer interaction based on virtual reality technology[J]. Wireless communications and mobile computing, 2021, 10: 1–5.
[2] LI Jiayao, RAY S, RAJANNA V, et al. Evaluating the performance of machine learning algorithms in gaze gesture recognition systems[J]. IEEE access, 2021, 10: 1020–1035.
[3] HUANG Dengyuan, HU W C, CHANG S H. Gabor filter-based hand-pose angle estimation for hand gesture recognition under varying illumination[J]. Expert systems with applications, 2011, 38(5): 6031–6042.
[4] TARVEKAR M P. Hand gesture recognition system for touch-less car interface using multiclass support vector machine[C]//2018 Second International Conference on Intelligent Computing and Control Systems. Madurai: IEEE, 2019: 1929?1932.
[5] RAHIM M A, MIAH A S M, SAYEED A, et al. Hand gesture recognition based on optimal segmentation in human-computer interaction[C]//2020 3rd IEEE International Conference on Knowledge Innovation and Invention. Kaohsiung: IEEE, 2021: 163?166.
[6] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the acm, 2017, 60(6): 84–90.
[7] GUO Xing, XU Wu, TANG Wen quan, et al. Research on optimization of static gesture recognition based on convolution neural network[C]//2019 4th International Conference on Mechanical, Control and Computer Engineering. Hohhot: IEEE, 2020: 398?3982.
[8] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems?Volume 1. Montreal: ACM, 2014: 568?576.
[9] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2016: 4489?4497.
[10] MOLCHANOV P, GUPTA S, KIM K, et al. Multi-sensor system for driver’s hand-gesture recognition[C]//2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Ljubljana: IEEE, 2015: 1?8.
[11] OYEDOTUN O K, KHASHMAN A. Deep learning in vision-based static hand gesture recognition[J]. Neural computing and applications, 2017, 28(12): 3941–3951.
[12] ELBADAWY M, ELONS A S, SHEDEED H A, et al. Arabic sign language recognition with 3D convolutional neural networks[C]//2017 Eighth International Conference on Intelligent Computing and Information Systems. Cairo: IEEE, 2018: 66?71.
[13] CARREIRA J, ZISSERMAN A. Quo vadis, action recognition? A new model and the kinetics dataset[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 4724?4733.
[14] FANG Wei, DING Yewen, ZHANG Feihong, et al. Gesture recognition based on CNN and DCGAN for calculation and text output[J]. IEEE access, 2019, 7: 28230–28237.
[15] KOLLER O, NEY H, BOWDEN R. Deep hand: how to train a CNN on 1 million hand images when your data is continuous and weakly labelled[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 3793?3802.
[16] JAHANDAD, SAM S M, KAMARDIN K, et al. Offline signature verification using deep learning convolutional neural network (CNN) architectures GoogLeNet inception-v1 and inception-v3[J]. Procedia computer science, 2019, 161: 475–483.
[17] WENG Juyang, LUCIW M. Dually optimal neuronal layers: lobe component analysis[J]. IEEE transactions on autonomous mental development, 2009, 1(1): 68–85.
[18] WENG Juyang, MCCLELLAND J, PENTLAND A, et al. Autonomous mental development by robots and animals[J]. Science, 2001, 291(5504): 599–600.
[19] WENG Juyang, HWANG W S. Incremental hierarchical discriminant regression[J]. IEEE transactions on neural networks, 2007, 18(2): 397–415.
[20] 黄敏, 路飞, 李晓磊, 等. 基于IHDR算法和BP神经网络复合框架的机器人服务自主认知和发育系统[J]. 机器人, 2019, 41(5): 609–619
HUANG Min, LU Fei, LI Xiaolei, et al. Autonomous cognition and development system of robot service based on a composite framework combining IHDR algorithm with BP neural network[J]. Robot, 2019, 41(5): 609–619
[21] LU Fei, HUANG Min, LI Xiaolei, et al. Learning and development of home service robots’ service cognition based on a learning mechanism[J]. Applied sciences, 2020, 10(2): 464.
[22] 钱夔, 宋爱国, 章华涛, 等. 基于自主发育神经网络的机器人室内场景识别[J]. 机器人, 2013, 35(6): 703–708,743
QIAN Kui, SONG Aiguo, ZHANG Huatao, et al. Robot indoor scenes recognition based on autonomous developmental neural network[J]. Robot, 2013, 35(6): 703–708,743
[23] 王东署, 谭达佩, 韦晓琴. 基于发育网络的人脸朝向识别研究[J]. 郑州大学学报(工学版), 2017, 38(5): 23–27
WANG Dongshu, TAN Dapei, WEI Xiaoqin. Study of face orientation recognition based on development network[J]. Journal of Zhengzhou university (engineering science edition), 2017, 38(5): 23–27
[24] CASTRO-GARCIA J L, WENG Juyang. Emergent multilingual language acquisition using developmental networks[C]//2019 International Joint Conference on Neural Networks. Budapest: IEEE, 2019: 1?8.
[25] ZHENG Zejia, WU Xiang, WENG Juyang. Emergent neural Turing machine and its visual navigation[J]. Neural networks, 2019, 110: 116–130.
[26] 余慧瑾, 方勇纯. 基于改进型自主发育网络的机器人场景识别方法[J]. 自动化学报, 2021, 47(7): 1530–1538
YU Huijin, FANG Yongchun. A robot scene recognition method based on improved autonomous developmental network[J]. Acta automatica sinica, 2021, 47(7): 1530–1538
[27] 余慧瑾, 方勇纯, 韦知辛. 基于多传感融合的自主发育网络场景识别方法[J]. 机器人, 2021, 43(6): 706–714
YU Huijin, FANG Yongchun, WEI Zhixin. A scene recognition method of autonomous developmental network based on multi-sensor fusion[J]. Robot, 2021, 43(6): 706–714
[28] 崔丽, 曾凤章. 基于“学习曲线”效应的长期质量成本模型[J]. 商业研究, 2004(24): 46–48
CUI Li, ZENG Fengzhang. A model of long-term quality cost based on learning curve effect[J]. Commercial research, 2004(24): 46–48
[29] MEMO A, MINTO L, ZANUTTIGH P. Exploiting silhouette descriptors and synthetic data for hand gesture recognition[C]//Smart Tools and Applications in Graphics - Italian Chapter Conference 2015. Verona: The Eurographics Association, 2015.
[30] MEMO A, ZANUTTIGH P. Head-mounted gesture controlled interface for human-computer interaction[J]. Multimedia tools and applications, 2018, 77(1): 27–53.
[31] BAKHEET S, AL-HAMADI A. Hand gesture recognition using optimized local Gabor features[J]. Journal of computational and theoretical nanoscience, 2017, 14(3): 1380–1389.
[32] BAKHEET S, AL-HAMADI A. Robust hand gesture recognition using multiple shape-oriented visual cues[J]. EURASIP journal on image and video processing, 2021, 2021(1): 26.
[33] TASMERE D, AHMED B, DAS S R. Real time hand gesture recognition in depth image using CNN[J]. International journal of computer applications, 2021, 174(16): 28–32.
[34] SAHANA T, BASU S, NASIPURI M, et al. MRCS: multi-radii circular signature based feature descriptor for hand gesture recognition[J]. Multimedia tools and applications, 2022, 81(6): 8539–8560.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems