[1]SUN Jun,XIE Zhenping,WANG Hongbo.An explainable network traffic anomaly detection model with coupled evolutionary sampling and deep decoding[J].CAAI Transactions on Intelligent Systems,2023,18(5):1070-1078.[doi:10.11992/tis.202211035]
Copy

An explainable network traffic anomaly detection model with coupled evolutionary sampling and deep decoding

References:
[1] LIU Hongyu, LANG Bo. Machine learning and deep learning methods for intrusion detection systems: a survey[J]. Applied sciences, 2019, 9(20): 4396.
[2] BHATTACHARYYA D K, KALITA J K. Network anomaly detection: a machine learning perspective[M]. Boca Raton: Crc Press, 2013.
[3] 杨月麟, 毕宗泽. 基于深度学习的网络流量异常检测[J]. 计算机科学, 2021, 48(S2): 540-546
YANG Yuelin, BI Zongze. Network anomaly detection based on deep learning[J]. Computer science, 2021, 48(S2): 540-546
[4] ZONG Bo, SONG Qi, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]//International Conference on Learning Representations. Vancouver: OpenReview, 2018: 1?19.
[5] 席亮, 王瑞东, 樊好义, 等. 基于样本关联感知的无监督深度异常检测模型[J]. 计算机学报, 2021, 44(11): 2317-2331
XI Liang, WANG Ruidong, FAN Haoyi, et al. Sample-correlation-aware unsupervised deep anomaly detection model[J]. Chinese journal of computers, 2021, 44(11): 2317-2331
[6] TAN Zhiyuan, JAMDAGNI A, HE Xiangjian, et al. A system for denial-of-service attack detection based on multivariate correlation analysis[J]. IEEE transactions on parallel and distributed systems, 2014, 25(2): 447-456.
[7] AHMED M, NASER M A, HU Jiankun. A survey of network anomaly detection techniques[J]. Journal of network and computer applications, 2016, 60: 19-31.
[8] TRAN C P, TRAN D K. Anomaly detection in POSTFIX mail log using principal component analysis[C]//2018 10th International Conference on Knowledge and Systems Engineering. Ho Chi Minh City: IEEE, 2018: 107?112.
[9] 李贝贝, 彭力, 戴菲菲. 结合马氏距离与自编码器的网络流量异常检测方法[J]. 计算机工程, 2022, 48(4): 133-142
LI Beibei, PENG Li, DAI Feifei. Abnormal network traffic detection method combining mahalanobis distance and autoencoder[J]. Computer engineering, 2022, 48(4): 133-142
[10] SCHLEGL T, SEEB?CK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]//International Conference on Information Processing in Medical Imaging. Cham: Springer, 2017: 146?157.
[11] ZENATI H, ROMAIN M, FOO C S, et al. Adversarially learned anomaly detection[C]//2018 IEEE International Conference on Data Mining. Singapore. IEEE, 2018: 727?736.
[12] ZHANG Kunzhong, KANG Xudong, LI Shutao. Isolation forest for anomaly detection in hyperspectral images[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium. Yokohama: IEEE, 2019: 437?440.
[13] SINGH K, MATHAI K J. Performance comparison of intrusion detection system between deep belief network (DBN)algorithm and state preserving extreme learning machine (SPELM) algorithm[C]//2019 IEEE International Conference on Electrical, Computer and Communication Technologies. Coimbatore: IEEE, 2019: 1?7.
[14] 王倩倩, 苗夺谦, 张远健. 深度自编码与自更新稀疏组合的异常事件检测算法[J]. 智能系统学报, 2020, 15(6): 1197-1203
WANG Qianqian, MIAO Duoqian, ZHANG Yuanjian. Abnormal event detection method based on deep auto-encoder and self-updating sparse combination[J]. CAAI transactions on intelligent systems, 2020, 15(6): 1197-1203
[15] ZHAI Shuangfei, CHENG Yu, LU Weining, et al. Deep structured energy based models for anomaly detection[C]//International conference on machine learning. New York: PMLR, 2016: 1100?1109.
[16] GONG Dong, LIU Lingqiao, LE V, et al. Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection[C]//IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2020: 1705?1714.
[17] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2. New York: ACM, 2014: 2672?2680.
[18] 黄训华, 张凤斌, 樊好义, 等. 基于多模态对抗学习的无监督时间序列异常检测[J]. 计算机研究与发展, 2021, 58(8): 1655-1667
HUANG Xunhua, ZHANG Fengbin, FAN Haoyi, et al. Multimodal adversarial learning based unsupervised time series anomaly detection[J]. Journal of computer research and development, 2021, 58(8): 1655-1667
[19] AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: UnSupervised anomaly detection on multivariate time series[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 3395?3404.
[20] TING Kaiming, XU Bicun, WASHIO T, et al. Isolation distributional kernel: a new tool for kernel based anomaly detection[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2020: 198?206.
[21] CHEN Yuanhong, TIAN Yu, PANG Guansong, et al. Deep one-class classification via interpolated Gaussian descriptor[J]. Proceedings of the AAAI conference on artificial intelligence, 2022, 36(1): 383-392.
[22] XIE Zhenping, SUN Jun, PALADE V, et al. Evolutionary sampling: a novel way of machine learning within a probabilistic framework[J]. Information sciences, 2015, 299: 262-282.
[23] TAVALLAEE M, BAGHERI E, LU Wei, et al. A detailed analysis of the KDD CUP 99 data set[C]//2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications. Ottawa: IEEE, 2009: 1?6.
[24] SHARAFALDIN I, HABIBI L A, GHORBANI A A. Toward generating a new intrusion detection dataset and intrusion traffic characterization[C]//Proceedings of the 4th International Conference on Information Systems Security and Privacy. Portugal: SCITEPRESS-Science and Technology Publications, 2018: 108?116.
[25] LI Kunlun, HUANG Houkuan, TIAN Shengfeng, et al. Improving one-class SVM for anomaly detection[C]//Proceedings of the 2003 International Conference on Machine Learning and Cybernetics. Xi’an: IEEE, 2004: 3077?3081.
[26] AN J, CHO S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special lecture on IE, 2015, 2(1): 1-18.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems