[1]LIU Jiaxuan,HU Feiyi,ZHANG Hui,et al.Dermoscopic images classification based on context and instance-level feature of self-supervised learning[J].CAAI Transactions on Intelligent Systems,2023,18(4):783-792.[doi:10.11992/tis.202211010]
Copy

Dermoscopic images classification based on context and instance-level feature of self-supervised learning

References:
[1] MIRBEIK-SABZEVARI A, TAVASSOLIAN N. Ultrawideband, stable normal and cancer skin tissue phantoms for millimeter-wave skin cancer imaging[J]. IEEE transactions on bio-medical engineering, 2019, 66(1): 176–186.
[2] HOSNY K M, KASSEM M A, FOAUD M M. Skin cancer classification using deep learning and transfer learning[C]//2018 9th Cairo International Biomedical Engineering Conference. Piscataway: IEEE, 2018: 90-93.
[3] 李晨, 张辉, 张邹铨, 等. 融合多尺度特征与全局上下文信息的X光违禁物品检测[J]. 中国图象图形学报, 2022, 27(10): 3043–3057
LI Chen, ZHANG Hui, ZHANG Zouquan, et al. Integrated multi-scale features and global context in X-ray detection for prohibited items[J]. Chinese journal of image and graphics, 2022, 27(10): 3043–3057
[4] SHEN Dinggang, WU Guorong, SUK H I. Deep learning in medical image analysis[J]. Annual review of biomedical engineering, 2017, 19: 221–248.
[5] SHIN H C, ROTH H R, GAO Mingchen, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE transactions on medical imaging, 2016, 35(5): 1285–1298.
[6] SADEGHI M, LEE T K, MCLEAN D, et al. Detection and analysis of irregular streaks in dermoscopic images of skin lesions[J]. IEEE transactions on medical imaging, 2013, 32(5): 849–861.
[7] MA Yuhui, LIU Jiang, LIU Yonghuai, et al. Structure and illumination constrained GAN for medical image enhancement[J]. IEEE transactions on medical imaging, 2021, 40(12): 3955–3967.
[8] BAILO O, HAM D, SHIN Y M. Red blood cell image generation for data augmentation using conditional generative adversarial networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2019: 1039-1048.
[9] JING Longlong, TIAN Yingli. Self-supervised visual feature learning with deep neural networks: a survey[J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(11): 4037–4058.
[10] 莫宏伟, 傅智杰. 基于迁移学习的无监督跨域人脸表情识别[J]. 智能系统学报, 2021, 16(3): 397–406
MO Hongwei, FU Zhijie. Unsupervised cross-domain expression recognition based on transfer learning[J]. CAAI transactions on intelligent systems, 2021, 16(3): 397–406
[11] 杜航原, 张晶, 王文剑. 一种深度自监督聚类集成算法[J]. 智能系统学报, 2020, 15(6): 1113–1120
DU Hangyuan, ZHANG Jing, WANG Wenjian. A deep self-supervised clustering ensemble algorithm[J]. CAAI transactions on intelligent systems, 2020, 15(6): 1113–1120
[12] WU Zhirong, XIONG Yuanjun, YU S X, et al. Unsupervised feature learning via non-parametric instance discrimination[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3733-3742.
[13] FENG Zeyu, XU Chang, TAO Dacheng. Self-supervised representation learning by rotation feature decoupling[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 10356-10366.
[14] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2016: 770-778.
[15] HE Kaiming, FAN Haoqi, WU Yuxin, et al. Momentum contrast for unsupervised visual representation learning[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9726-9735.
[16] ZIMMERMANN R S , SHARMA Y, SCHNEIDER S, et al. Contrastive learning inverts the data generating process[EB/OL]. (2021?02?17)[2022?11?10]. https://arxiv.org/abs/2102.08850.
[17] ROTEMBERG V, KURTANSKY N, BETZ-STABLEIN B, et al. A patient-centric dataset of images and metadata for identifying melanomas using clinical context[J]. Scientific data, 2021, 8(1): 34.
[18] TSCHANDL P, ROSENDAHL C, KITTLER H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions[J]. Scientific data, 2018, 5: 180161.
[19] CHEN Ting, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 1597?1607.
[20] GIDARIS S, SINGH P, KOMODAKIS N. Unsupervised representation learning by predicting image rotations[EB/OL]. (2018?03?21)[2022?11?10].https://arxiv.org/abs/1803.07728.
[21] GRILL J B, STRUB F, ALTCHé F, et al. Bootstrap your own latent a new approach to self-supervised learning[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 21271?21284.
[22] MISRA I, VAN DER MAATEN L. Self-supervised learning of pretext-invariant representations[C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Piscataway: IEEE, 2020: 6706-6716.
[23] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255.
[24] ROBBINS H, MONRO S. A stochastic approximation method[J]. The annals of mathematical statistics, 1951, 22(3): 400–407.
[25] RODRIGUEZ J D, PEREZ A, LOZANO J A. Sensitivity analysis of k-fold cross validation in prediction error estimation[J]. IEEE transactions on pattern analysis and machine intelligence, 2010, 32(3): 569–575.
[26] JIANG Pengtao, ZHANG Changbin, HOU Qibin, et al. Layercam: exploring hierarchical class activation maps for localization[J]. IEEE transactions on image processing, 2021, 30: 5875–5888.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems