[1]CHANG Guangyu,CHEN Zhifeng,GUO Chunyu,et al.Neural network-based nonsingular terminal sliding mode control of the Stewart platform[J].CAAI Transactions on Intelligent Systems,2024,19(2):353-359.[doi:10.11992/tis.202210004]
Copy

Neural network-based nonsingular terminal sliding mode control of the Stewart platform

References:
[1] 郭立东. 舰载激光武器稳定平台控制技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2011.
GUO Lidong. The controller of stabilized platform for shipborne laser weapons[D]. Harbin: Harbin Engineering University, 2011.
[2] 郑欢. 船用六自由度稳定平台的控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
ZHENG Huan. Research on control of shipborne six-degree-of-freedom stabilized platform[D]. Harbin: Harbin Institute of Technology, 2018.
[3] INNOCENTI C, PARENTI-CASTELLI V. A novel numerical approach to the closure of the 6-6 Stewart platform mechanism[C]//Fifth International Conference on Advanced Robotics’ Robots in Unstructured Environments. Pisa: IEEE, 2002: 851-855.
[4] LEBRET G, LIU K, LEWIS F L. Dynamic analysis and control of a Stewart platform manipulator[J]. Journal of robotic systems, 1993, 10(5): 629–655.
[5] YANG Chifu, HUANG Qitao, HAN Junwei. Decoupling control for spatial six-degree-of-freedom electro-hydraulic parallel robot[J]. Robotics and computer-integrated manufacturing, 2012, 28(1): 14–23.
[6] 赵静一, 张荣兵, 孙龙, 等. Stewart平台位置反解研究[J]. 液压与气动, 2017(12): 40–47
ZHAO Jingyi, ZHANG Rongbing, SUN Long, et al. Position inverse solution of Stewart platform[J]. Chinese hydraulics & pneumatics, 2017(12): 40–47
[7] KOEKEBAKKER S H. Model based control of a flight simulator motion system[D]. Delft: Delft university of technology, 2001.
[8] 董彦良, 吴盛林. 一种实用的6-6Stewart平台的实时位置正解法[J]. 哈尔滨工业大学学报, 2002, 34(1): 116–119
DONG Yanliang, WU Shenglin. A hybrid method to solve forward kinematics of general 6-6 Stewart platform[J]. Journal of Harbin Institute of Technology, 2002, 34(1): 116–119
[9] 姚程. 六自由度运动平台的模糊控制策略研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.
YAO Cheng. Research on fuzzy control strategy of 6 DOF motion platform[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015.
[10] 刘希. 六自由度并联平台位姿跟踪控制研究[D]. 秦皇岛: 燕山大学, 2019.
LIU Xi. Research on pose tracking control of six degree of freedom parallel platform[D]. Qinhuangdao: Yanshan University, 2019.
[11] 陈泽栋. 六自由度位姿平台机构分析与运动控制策略研究[D]. 北京: 中国运载火箭技术研究院, 2020.
CHEN Zedong. Analysis and motion control of 6-DOF position and pose mechanism[D]. Beijing: The first Academy of China Aerospace Science and Technology Corporation, 2020.
[12] LIU Jinkun, SUN Fuchun. A novel dynamic terminal sliding mode control of uncertain nonlinear systems[J]. Journal of control theory and applications, 2007, 5(2): 189–193.
[13] DING Shihong, ZHANG Chi, LI Xuebing. Terminal sliding mode control of second-order systems with bounded input[C]//2013 25th Chinese Control and Decision Conference. Guiyang: IEEE, 2013: 265-269.
[14] 刘金琨, 孙富春. 滑模变结构控制理论及其算法研究与进展[J]. 控制理论与应用, 2007, 24(3): 407–418
LIU Jinkun, SUN Fuchun. Research and development on theory and algorithms of sliding mode control[J]. Control theory & applications, 2007, 24(3): 407–418
[15] FENG Yong, YU Xinghuo, MAN Zhihong. Non-singular terminal sliding mode control of rigid manipulators[J]. Automatica, 2002, 38(12): 2159–2167.
[16] 余荣荣, 姚乐. 基于遗传算法优化的机器人非奇异终端滑模控制[J]. 青岛科技大学学报(自然科学版), 2014, 35(4): 422–426
YU Rongrong, YAO Le. Nonsingular terminal sliding mode control of robot based on the genetic algorithm optimization[J]. Journal of Qingdao University of Science and Technology (natural science edition), 2014, 35(4): 422–426
[17] 黄其涛, 韩俊伟, 何景峰. 六自由度并联运动平台动力学建模及分析[J]. 机械科学与技术, 2006, 25(4): 382–385
HUANG Qitao, HAN Junwei, HE Jingfeng. Dynamics modeling of a six-degree-of-freedom parallel platform and its analysis[J]. Mechanical science and technology, 2006, 25(4): 382–385
[18] 杨宇, 郑淑涛, 韩俊伟. 基于动力学的Stewart平台振动控制策略研究[J]. 农业机械学报, 2010, 41(6): 20–24
YANG Yu, ZHENG Shutao, HAN Junwei. Stewart platform vibration control strategy based on dynamics[J]. Transactions of the Chinese society for agricultural machinery, 2010, 41(6): 20–24
[19] PARK J, SANDBERG I W. Approximation and radial-basis-function networks[J]. Neural computation, 1993, 5(2): 305–316.
[20] WANG D, HUANG Jie. Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form[J]. IEEE transactions on neural networks, 2005, 16(1): 195–202.
Similar References:

Memo

-

Last Update: 1900-01-01

Copyright © CAAI Transactions on Intelligent Systems